Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cardiovasc Diabetol ; 23(1): 97, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493102

RESUMO

BACKGROUND: Tissue-specific insulin resistance (IR) predominantly in muscle (muscle IR) or liver (liver IR) has previously been linked to distinct fasting metabolite profiles, but postprandial metabolite profiles have not been investigated in tissue-specific IR yet. Given the importance of postprandial metabolic impairments in the pathophysiology of cardiometabolic diseases, we compared postprandial plasma metabolite profiles in response to a high-fat mixed meal between individuals with predominant muscle IR or liver IR. METHODS: This cross-sectional study included data from 214 women and men with BMI 25-40 kg/m2, aged 40-75 years, and with predominant muscle IR or liver IR. Tissue-specific IR was assessed using the muscle insulin sensitivity index (MISI) and hepatic insulin resistance index (HIRI), which were calculated from the glucose and insulin responses during a 7-point oral glucose tolerance test. Plasma samples were collected before (T = 0) and after (T = 30, 60, 120, 240 min) consumption of a high-fat mixed meal and 247 metabolite measures, including lipoproteins, cholesterol, triacylglycerol (TAG), ketone bodies, and amino acids, were quantified using nuclear magnetic resonance spectroscopy. Differences in postprandial plasma metabolite iAUCs between muscle and liver IR were tested using ANCOVA with adjustment for age, sex, center, BMI, and waist-to-hip ratio. P-values were adjusted for a false discovery rate (FDR) of 0.05 using the Benjamini-Hochberg method. RESULTS: Sixty-eight postprandial metabolite iAUCs were significantly different between liver and muscle IR. Liver IR was characterized by greater plasma iAUCs of large VLDL (p = 0.004), very large VLDL (p = 0.002), and medium-sized LDL particles (p = 0.026), and by greater iAUCs of TAG in small VLDL (p = 0.025), large VLDL (p = 0.003), very large VLDL (p = 0.002), all LDL subclasses (all p < 0.05), and small HDL particles (p = 0.011), compared to muscle IR. In liver IR, the postprandial plasma fatty acid (FA) profile consisted of a higher percentage of saturated FA (p = 0.013), and a lower percentage of polyunsaturated FA (p = 0.008), compared to muscle IR. CONCLUSION: People with muscle IR or liver IR have distinct postprandial plasma metabolite profiles, with more unfavorable postprandial metabolite responses in those with liver IR compared to muscle IR.


Assuntos
Resistência à Insulina , Masculino , Humanos , Feminino , Resistência à Insulina/fisiologia , Estudos Transversais , Triglicerídeos , Ácidos Graxos/metabolismo , Fígado/metabolismo , Músculos/metabolismo , Período Pós-Prandial/fisiologia
2.
Am J Clin Nutr ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38851634

RESUMO

BACKGROUND: We previously showed that dietary intervention effects on cardiometabolic health were driven by tissue-specific insulin resistance (IR) phenotype: individuals with predominant muscle IR (MIR) benefited more from a low-fat, high-protein, and high-fiber (LFHP) diet, whereas individuals with predominant liver insulin resistance (LIR) benefited more from a high-monounsaturated fatty acid (HMUFA) diet. OBJECTIVES: To further characterize the effects of LFHP and HMUFA diets and their interaction with tissue-specific IR, we investigated dietary intervention effects on fasting and postprandial plasma metabolite profile. METHODS: Adults with MIR or LIR (40-75 y, BMI 25-40 kg/m2) were randomly assigned to a 12-wk HMUFA or LFHP diet (n = 242). After the exclusion of statin use, 214 participants were included in this prespecified secondary analysis. Plasma samples were collected before (T = 0) and after (T = 30, 60, 120, and 240 min) a high-fat mixed meal for quantification of 247 metabolite measures using nuclear magnetic resonance spectroscopy. RESULTS: A larger reduction in fasting VLDL-triacylglycerol (TAG) and VLDL particle size was observed in individuals with MIR following the LFHP diet and those with LIR following the HMUFA diet, although no longer statistically significant after false discovery rate (FDR) adjustment. No IR phenotype-by-diet interactions were found for postprandial plasma metabolites assessed as total area under the curve (tAUC). Irrespective of IR phenotype, the LFHP diet induced greater reductions in postprandial plasma tAUC of the larger VLDL particles and small HDL particles, and TAG content in most VLDL subclasses and the smaller LDL and HDL subclasses (for example, VLDL-TAG tAUC standardized mean change [95% CI] LFHP = -0.29 [-0.43, -0.16] compared with HMUFA = -0.04 [-0.16, 0.09]; FDR-adjusted P for diet × time = 0.041). CONCLUSIONS: Diet effects on plasma metabolite profiles were more pronounced than phenotype-by-diet interactions. An LFHP diet may be more effective than an HMUFA diet for reducing cardiometabolic risk in individuals with tissue-specific IR, irrespective of IR phenotype. Am J Clin Nutr 20xx;x:xx. This trial was registered at the clinicaltrials.gov registration (https://clinicaltrials.gov/study/NCT03708419?term=NCT03708419&rank=1) as NCT03708419 and CCMO registration (https://www.toetsingonline.nl/to/ccmo_search.nsf/fABRpop?readform&unids=3969AABCD9BA27FEC12587F1001BCC65) as NL63768.068.17.

3.
Nutr Metab (Lond) ; 21(1): 20, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594756

RESUMO

BACKGROUND: Body composition and body fat distribution are important predictors of cardiometabolic diseases. The etiology of cardiometabolic diseases is heterogenous, and partly driven by inter-individual differences in tissue-specific insulin sensitivity. OBJECTIVES: To investigate (1) the associations between body composition and whole-body, liver and muscle insulin sensitivity, and (2) changes in body composition and insulin sensitivity and their relationship after a 12-week isocaloric diet high in mono-unsaturated fatty acids (HMUFA) or a low-fat, high-protein, high-fiber (LFHP) diet. METHODS: This subcohort analysis of the PERSON study includes 93 individuals (53% women, BMI 25-40 kg/m2, 40-75 years) who participated in this randomized intervention study. At baseline and after 12 weeks of following the LFHP, or HMUFA diet, we performed a 7-point oral glucose tolerance test to assess whole-body, liver, and muscle insulin sensitivity, and whole-body magnetic resonance imaging to determine body composition and body fat distribution. Both diets are within the guidelines of healthy nutrition. RESULTS: At baseline, liver fat content was associated with worse liver insulin sensitivity (ß [95%CI]; 0.12 [0.01; 0.22]). Only in women, thigh muscle fat content was inversely related to muscle insulin sensitivity (-0.27 [-0.48; -0.05]). Visceral adipose tissue (VAT) was inversely associated with whole-body, liver, and muscle insulin sensitivity. Both diets decreased VAT, abdominal subcutaneous adipose tissue (aSAT), and liver fat, but not whole-body and tissue-specific insulin sensitivity with no differences between diets. Waist circumference, however, decreased more following the LFHP diet as compared to the HMUFA diet (-3.0 vs. -0.5 cm, respectively). After the LFHP but not HMUFA diet, improvements in body composition were positively associated with improvements in whole-body and liver insulin sensitivity. CONCLUSIONS: Liver and muscle insulin sensitivity are distinctly associated with liver and muscle fat accumulation. Although both LFHP and HMUFA diets improved in body fat, VAT, aSAT, and liver fat, only LFHP-induced improvements in body composition are associated with improved insulin sensitivity. TRIAL REGISTRATION: NCT03708419 (clinicaltrials.gov).

4.
Diabetes ; 73(7): 1112-1121, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38656918

RESUMO

Obesity is associated with chronic inflammation and metabolic complications, including insulin resistance (IR). Immune cells drive inflammation through the rewiring of intracellular metabolism. However, the impact of obesity-related IR on the metabolism and functionality of circulating immune cells, like monocytes, remains poorly understood. To increase insight into the interindividual variation of immunometabolic signatures among individuals and their role in the development of IR, we assessed systemic and tissue-specific IR and circulating immune markers, and we characterized metabolic signatures and cytokine secretion of circulating monocytes from 194 individuals with a BMI ≥25 kg/m2. Monocyte metabolic signatures were defined using extracellular acidification rates (ECARs) to estimate glycolysis and oxygen consumption rates (OCRs) for oxidative metabolism. Although monocyte metabolic signatures and function based on cytokine secretion varied greatly among study participants, they were strongly associated with each other. The ECAR-to-OCR ratio, representing the balance between glycolysis and oxidative metabolism, was negatively associated with fasting insulin levels, systemic IR, and liver-specific IR. These results indicate that monocytes from individuals with IR were relatively more dependent on oxidative metabolism, whereas monocytes from more insulin-sensitive individuals were more dependent on glycolysis. Additionally, circulating CXCL11 was negatively associated with the degree of systemic IR and positively with the ECAR-to-OCR ratio in monocytes, suggesting that individuals with high IR and a monocyte metabolic dependence on oxidative metabolism also have lower levels of circulating CXCL11. Our findings suggest that monocyte metabolism is related to obesity-associated IR progression and deepen insights into the interplay between innate immune cell metabolism and IR development in humans.


Assuntos
Resistência à Insulina , Monócitos , Obesidade , Humanos , Resistência à Insulina/fisiologia , Resistência à Insulina/imunologia , Obesidade/metabolismo , Obesidade/imunologia , Monócitos/metabolismo , Monócitos/imunologia , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Glicólise , Quimiocina CXCL11/metabolismo , Quimiocina CXCL11/sangue , Citocinas/metabolismo , Citocinas/sangue , Consumo de Oxigênio
5.
Sci Rep ; 14(1): 8037, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580749

RESUMO

Continuous glucose monitoring (CGM) is a promising, minimally invasive alternative to plasma glucose measurements for calibrating physiology-based mathematical models of insulin-regulated glucose metabolism, reducing the reliance on in-clinic measurements. However, the use of CGM glucose, particularly in combination with insulin measurements, to develop personalized models of glucose regulation remains unexplored. Here, we simultaneously measured interstitial glucose concentrations using CGM as well as plasma glucose and insulin concentrations during an oral glucose tolerance test (OGTT) in individuals with overweight or obesity to calibrate personalized models of glucose-insulin dynamics. We compared the use of interstitial glucose with plasma glucose in model calibration, and evaluated the effects on model fit, identifiability, and model parameters' association with clinically relevant metabolic indicators. Models calibrated on both plasma and interstitial glucose resulted in good model fit, and the parameter estimates associated with metabolic indicators such as insulin sensitivity measures in both cases. Moreover, practical identifiability of model parameters was improved in models estimated on CGM glucose compared to plasma glucose. Together these results suggest that CGM glucose may be considered as a minimally invasive alternative to plasma glucose measurements in model calibration to quantify the dynamics of glucose regulation.


Assuntos
Glucose , Insulina , Humanos , Glicemia/metabolismo , Automonitorização da Glicemia , Monitoramento Contínuo da Glicose
6.
Acta Physiol (Oxf) ; 237(4): e13945, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36745002

RESUMO

AIM: The aim of this study is to investigate associations between the physical activity (PA) spectrum (sedentary behavior to exercise) and tissue-specific insulin resistance (IR). METHODS: We included 219 participants for analysis (median [IQR]: 61 [55; 67] years, BMI 29.6 [26.9; 32.0] kg/m2 ; 60% female) with predominant muscle or liver IR, as determined using a 7-point oral glucose tolerance test (OGTT). PA and sedentary behavior were measured objectively (ActivPAL) across 7 days. Context-specific PA was assessed with the Baecke questionnaire. Multiple linear regression models (adjustments include age, sex, BMI, site, season, retirement, and dietary intake) were used to determine associations between the PA spectrum and hepatic insulin resistance index (HIRI), muscle insulin sensitivity index (MISI) and whole-body IR (HOMA-IR, Matsuda index). RESULTS: In fully adjusted models, objectively measured total PA (standardized regression coefficient ß = 0.17, p = 0.020), light-intensity PA (ß = 0.15, p = 0.045) and moderate-to-vigorous intensity PA (ß = 0.13, p = 0.048) were independently associated with Matsuda index, but not HOMA-IR (p > 0.05). A higher questionnaire-derived sport index and leisure index were associated with significantly lower whole-body IR (Matsuda, HOMA-IR) in men but not in women. Results varied across tissues: more time spent sedentary (ß = -0.24, p = 0.045) and a higher leisure index (ß = 0.14, p = 0.034) were respectively negatively and positively associated with MISI, but not HIRI. A higher sport index was associated with lower HIRI (ß = -0.30, p = 0.007, in men only). CONCLUSION: While we confirm a beneficial association between PA and whole-body IR, our findings indicate that associations between the PA spectrum and IR seem distinct depending on the primary site of insulin resistance (muscle or liver).


Assuntos
Exercício Físico , Resistência à Insulina , Comportamento Sedentário , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Teste de Tolerância a Glucose , Músculos , Fígado
7.
Obesity (Silver Spring) ; 31(5): 1326-1337, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36998153

RESUMO

OBJECTIVE: A proinflammatory adipose tissue (AT) microenvironment and systemic low-grade inflammation may differentially affect tissue-specific insulin sensitivity. This study investigated the relationships of abdominal subcutaneous AT (aSAT) and circulating immune cells, aSAT gene expression, and circulating inflammatory markers with liver and skeletal muscle insulin sensitivity in people with overweight and obesity. METHODS: Individuals with overweight and obesity from the PERSonalized Glucose Optimization Through Nutritional Intervention (PERSON) Study (n = 219) and the Maastricht Study (replication cohort; n = 1256) underwent a seven-point oral glucose tolerance test to assess liver and muscle insulin sensitivity, and circulating inflammatory markers were determined. In subgroups, flow cytometry was performed to identify circulating and aSAT immune cells, and aSAT gene expression was evaluated. RESULTS: The relative abundances of circulating T cells, nonclassical monocytes, and CD56dim CD16+ natural killer cells were inversely associated with liver, but not muscle, insulin sensitivity in the PERSON Study. The inverse association between circulating (classical) monocytes and liver insulin sensitivity was confirmed in the Maastricht Study. In aSAT, immune cell populations were not related to insulin sensitivity. Furthermore, aSAT gene expression of interleukin 6 and CD14 was positively associated with muscle, but not liver, insulin sensitivity. CONCLUSIONS: The present findings demonstrate that circulating immune cell populations and inflammatory gene expression in aSAT show distinct associations with liver and muscle insulin sensitivity.


Assuntos
Resistência à Insulina , Sobrepeso , Humanos , Sobrepeso/metabolismo , Resistência à Insulina/fisiologia , Gordura Subcutânea/metabolismo , Tecido Adiposo/metabolismo , Obesidade/metabolismo , Músculo Esquelético/metabolismo
8.
Cell Metab ; 35(1): 71-83.e5, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36599304

RESUMO

Precision nutrition based on metabolic phenotype may increase the effectiveness of interventions. In this proof-of-concept study, we investigated the effect of modulating dietary macronutrient composition according to muscle insulin-resistant (MIR) or liver insulin-resistant (LIR) phenotypes on cardiometabolic health. Women and men with MIR or LIR (n = 242, body mass index [BMI] 25-40 kg/m2, 40-75 years) were randomized to phenotype diet (PhenoDiet) group A or B and followed a 12-week high-monounsaturated fatty acid (HMUFA) diet or low-fat, high-protein, and high-fiber diet (LFHP) (PhenoDiet group A, MIR/HMUFA and LIR/LFHP; PhenoDiet group B, MIR/LFHP and LIR/HMUFA). PhenoDiet group B showed no significant improvements in the primary outcome disposition index, but greater improvements in insulin sensitivity, glucose homeostasis, serum triacylglycerol, and C-reactive protein compared with PhenoDiet group A were observed. We demonstrate that modulating macronutrient composition within the dietary guidelines based on tissue-specific insulin resistance (IR) phenotype enhances cardiometabolic health improvements. Clinicaltrials.gov registration: NCT03708419, CCMO registration NL63768.068.17.


Assuntos
Doenças Cardiovasculares , Resistência à Insulina , Feminino , Humanos , Doenças Cardiovasculares/prevenção & controle , Dieta com Restrição de Gorduras , Insulina , Resistência à Insulina/fisiologia , Fenótipo , Adulto , Pessoa de Meia-Idade , Idoso
9.
Front Nutr ; 9: 1026213, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330140

RESUMO

Background: We previously showed that whole-grain wheat (WGW) consumption had beneficial effects on liver fat accumulation, as compared to refined wheat (RW). The mechanisms underlying these effects remain unclear. Objective: In this study, we investigated the effects of WGW vs. RW consumption on plasma metabolite levels to explore potential underlying mechanisms of the preventive effect of WGW consumption on liver fat accumulation. Methods: Targeted metabolomics of plasma obtained from a concluded 12-week double-blind, randomized controlled trial was performed. Fifty overweight or obese men and women aged 45-70 years with mildly elevated levels of plasma cholesterol were randomized to either 98 g/d of WGW or RW products. Before and after the intervention, a total of 89 fasting plasma metabolite concentrations including acylcarnitines, trimethylamine-N-oxide (TMAO), choline, betaine, bile acids, and signaling lipids were quantified by UPLC-MS/MS. Intrahepatic triglycerides (IHTG) were quantified by 1H-MRS, and multiple liver markers, including circulating levels of ß-hydroxybutyrate, alanine transaminase (ALT), aspartate transaminase (AST), γ-glutamyltransferase (γ-GT), serum amyloid A (SAA), and C-reactive protein, were assessed. Results: The WGW intervention increased plasma concentrations of four out of 52 signaling lipids-lysophosphatidic acid C18:2, lysophosphatidylethanolamine C18:1 and C18:2, and platelet-activating factor C18:2-and decreased concentrations of the signaling lipid lysophosphatidylglycerol C20:3 as compared to RW intervention, although these results were no longer statistically significant after false discovery rate (FDR) correction. Plasma concentrations of the other metabolites that we quantified were not affected by WGW or RW intervention. Changes in the above-mentioned metabolites were not correlated to change in IHTG upon the intervention. Conclusion: Plasma acylcarnitines, bile acids, and signaling lipids were not robustly affected by the WGW or RW interventions, which makes them less likely candidates to be directly involved in the mechanisms that underlie the protective effect of WGW consumption or detrimental effect of RW consumption on liver fat accumulation. Clinical trial registration: [www.ClinicalTrials.gov], identifier [NCT02385149].

10.
Nutrients ; 14(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36501091

RESUMO

Recent studies suggest that circulating fibroblast growth factor 21 (FGF21) may be a marker of metabolic health status. We performed a secondary analysis of a 12-week randomized controlled trial to investigate the effects of two energy restriction (ER) diets on fasting and postprandial plasma FGF21 levels, as well as to explore correlations of plasma FGF21 with metabolic health markers, (macro)nutrient intake and sweet-taste preference. Abdominally obese subjects aged 40-70 years (n = 110) were randomized to one of two 25% ER diets (high-nutrient-quality diet or low-nutrient-quality diet) or a control group. Plasma FGF21 was measured in the fasting state and 120 min after a mixed meal. Both ER diets did not affect fasting or postprandial plasma FGF21 levels despite weight loss and accompanying health improvements. At baseline, the postprandial FGF21 response was inversely correlated to fasting plasma glucose (ρ = -0.24, p = 0.020) and insulin (ρ = -0.32, p = 0.001), HOMA-IR (ρ = -0.34, p = 0.001), visceral adipose tissue (ρ = -0.24, p = 0.046), and the liver enzyme aspartate aminotransferase (ρ = -0.23, p = 0.021). Diet-induced changes in these markers did not correlate to changes in plasma FGF21 levels upon intervention. Baseline higher habitual polysaccharide intake, but not mono- and disaccharide intake or sweet-taste preference, was related to lower fasting plasma FGF21 (p = 0.022). In conclusion, we found no clear evidence that fasting plasma FGF21 is a marker for metabolic health status. Circulating FGF21 dynamics in response to an acute nutritional challenge may reflect metabolic health status better than fasting levels.


Assuntos
Fatores de Crescimento de Fibroblastos , Redução de Peso , Humanos , Jejum , Fatores de Crescimento de Fibroblastos/metabolismo , Obesidade/metabolismo , Adulto , Pessoa de Meia-Idade , Idoso
12.
Front Nutr ; 8: 694568, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277687

RESUMO

Background: It is well-established that the etiology of type 2 diabetes differs between individuals. Insulin resistance (IR) may develop in different tissues, but the severity of IR may differ in key metabolic organs such as the liver and skeletal muscle. Recent evidence suggests that these distinct tissue-specific IR phenotypes may also respond differentially to dietary macronutrient composition with respect to improvements in glucose metabolism. Objective: The main objective of the PERSON study is to investigate the effects of an optimal vs. suboptimal dietary macronutrient intervention according to tissue-specific IR phenotype on glucose metabolism and other health outcomes. Methods: In total, 240 overweight/obese (BMI 25 - 40 kg/m2) men and women (age 40 - 75 years) with either skeletal muscle insulin resistance (MIR) or liver insulin resistance (LIR) will participate in a two-center, randomized, double-blind, parallel, 12-week dietary intervention study. At screening, participants undergo a 7-point oral glucose tolerance test (OGTT) to determine the hepatic insulin resistance index (HIRI) and muscle insulin sensitivity index (MISI), classifying each participant as either "No MIR/LIR," "MIR," "LIR," or "combined MIR/LIR." Individuals with MIR or LIR are randomized to follow one of two isocaloric diets varying in macronutrient content and quality, that is hypothesized to be either an optimal or suboptimal diet, depending on their tissue-specific IR phenotype (MIR/LIR). Extensive measurements in a controlled laboratory setting as well as phenotyping in daily life are performed before and after the intervention. The primary study outcome is the difference in change in disposition index, which is the product of insulin sensitivity and first-phase insulin secretion, between participants who received their hypothesized optimal or suboptimal diet. Discussion: The PERSON study is one of the first randomized clinical trials in the field of precision nutrition to test effects of a more personalized dietary intervention based on IR phenotype. The results of the PERSON study will contribute knowledge on the effectiveness of targeted nutritional strategies to the emerging field of precision nutrition, and improve our understanding of the complex pathophysiology of whole body and tissue-specific IR. Clinical Trial Registration: https://clinicaltrials.gov/ct2/show/NCT03708419, clinicaltrials.gov as NCT03708419.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA