RESUMO
Comprehensive genome annotation is essential to understand the impact of clinically relevant variants. However, the absence of a standard for clinical reporting and browser display complicates the process of consistent interpretation and reporting. To address these challenges, Ensembl/GENCODE1 and RefSeq2 launched a joint initiative, the Matched Annotation from NCBI and EMBL-EBI (MANE) collaboration, to converge on human gene and transcript annotation and to jointly define a high-value set of transcripts and corresponding proteins. Here, we describe the MANE transcript sets for use as universal standards for variant reporting and browser display. The MANE Select set identifies a representative transcript for each human protein-coding gene, whereas the MANE Plus Clinical set provides additional transcripts at loci where the Select transcripts alone are not sufficient to report all currently known clinical variants. Each MANE transcript represents an exact match between the exonic sequences of an Ensembl/GENCODE transcript and its counterpart in RefSeq such that the identifiers can be used synonymously. We have now released MANE Select transcripts for 97% of human protein-coding genes, including all American College of Medical Genetics and Genomics Secondary Findings list v3.0 (ref. 3) genes. MANE transcripts are accessible from major genome browsers and key resources. Widespread adoption of these transcript sets will increase the consistency of reporting, facilitate the exchange of data regardless of the annotation source and help to streamline clinical interpretation.
Assuntos
Biologia Computacional , Bases de Dados Genéticas , Genômica , Genoma , Humanos , Disseminação de Informação , Anotação de Sequência Molecular , National Library of Medicine (U.S.) , Estados UnidosRESUMO
The NHGRI-EBI GWAS Catalog (www.ebi.ac.uk/gwas) is a FAIR knowledgebase providing detailed, structured, standardised and interoperable genome-wide association study (GWAS) data to >200 000 users per year from academic research, healthcare and industry. The Catalog contains variant-trait associations and supporting metadata for >45 000 published GWAS across >5000 human traits, and >40 000 full P-value summary statistics datasets. Content is curated from publications or acquired via author submission of prepublication summary statistics through a new submission portal and validation tool. GWAS data volume has vastly increased in recent years. We have updated our software to meet this scaling challenge and to enable rapid release of submitted summary statistics. The scope of the repository has expanded to include additional data types of high interest to the community, including sequencing-based GWAS, gene-based analyses and copy number variation analyses. Community outreach has increased the number of shared datasets from under-represented traits, e.g. cancer, and we continue to contribute to awareness of the lack of population diversity in GWAS. Interoperability of the Catalog has been enhanced through links to other resources including the Polygenic Score Catalog and the International Mouse Phenotyping Consortium, refinements to GWAS trait annotation, and the development of a standard format for GWAS data.
Assuntos
Estudo de Associação Genômica Ampla , Bases de Conhecimento , Animais , Humanos , Camundongos , Variações do Número de Cópias de DNA , National Human Genome Research Institute (U.S.) , Fenótipo , Polimorfismo de Nucleotídeo Único , Software , Estados UnidosRESUMO
The Ensembl (https://www.ensembl.org) is a system for generating and distributing genome annotation such as genes, variation, regulation and comparative genomics across the vertebrate subphylum and key model organisms. The Ensembl annotation pipeline is capable of integrating experimental and reference data from multiple providers into a single integrated resource. Here, we present 94 newly annotated and re-annotated genomes, bringing the total number of genomes offered by Ensembl to 227. This represents the single largest expansion of the resource since its inception. We also detail our continued efforts to improve human annotation, developments in our epigenome analysis and display, a new tool for imputing causal genes from genome-wide association studies and visualisation of variation within a 3D protein model. Finally, we present information on our new website. Both software and data are made available without restriction via our website, online tools platform and programmatic interfaces (available under an Apache 2.0 license) and data updates made available four times a year.
Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Epigenoma , Anotação de Sequência Molecular , Algoritmos , Animais , Gráficos por Computador , Bases de Dados de Proteínas , Variação Genética , Estudo de Associação Genômica Ampla , Genômica , Histonas/metabolismo , Humanos , Imageamento Tridimensional , Internet , Ligantes , Ferramenta de Busca , Software , Especificidade da Espécie , Transcriptoma , Interface Usuário-Computador , NavegadorRESUMO
Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of interfaces to genomic data across the tree of life, including reference genome sequence, gene models, transcriptional data, genetic variation and comparative analysis. Data may be accessed via our website, online tools platform and programmatic interfaces, with updates made four times per year (in synchrony with Ensembl). Here, we provide an overview of Ensembl Genomes, with a focus on recent developments. These include the continued growth, more robust and reproducible sets of orthologues and paralogues, and enriched views of gene expression and gene function in plants. Finally, we report on our continued deeper integration with the Ensembl project, which forms a key part of our future strategy for dealing with the increasing quantity of available genome-scale data across the tree of life.
Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Variação Genética , Genoma Bacteriano , Genoma Fúngico , Genoma de Planta , Algoritmos , Animais , Caenorhabditis elegans/genética , Genômica , Internet , Anotação de Sequência Molecular , Fenótipo , Plantas/genética , Valores de Referência , Software , Interface Usuário-ComputadorRESUMO
The Ensembl project (https://www.ensembl.org) makes key genomic data sets available to the entire scientific community without restrictions. Ensembl seeks to be a fundamental resource driving scientific progress by creating, maintaining and updating reference genome annotation and comparative genomics resources. This year we describe our new and expanded gene, variant and comparative annotation capabilities, which led to a 50% increase in the number of vertebrate genomes we support. We have also doubled the number of available human variants and added regulatory regions for many mouse cell types and developmental stages. Our data sets and tools are available via the Ensembl website as well as a through a RESTful webservice, Perl application programming interface and as data files for download.
Assuntos
Bases de Dados Genéticas , Genoma/genética , Genômica , Vertebrados/genética , Animais , Biologia Computacional/tendências , Humanos , Camundongos , Anotação de Sequência Molecular , SoftwareRESUMO
The bioadsorbent C1, which is a chitosan derivative prepared in a one-step synthesis, was successfully used to adsorb Cr(VI) and Cu(II) simultaneously. Here, for the first time the simultaneous adsorption of a cation and an anion was modeled using the Corsel model for kinetics and the Real Adsorbed Solution Theory model for equilibrium data. Batch studies of the adsorption of Cu(II) and Cr(VI) in single and binary aqueous solutions were performed as a function of initial solute concentration, contact time, and solution pH. The maximum adsorption capacities of C1 in single and binary aqueous solutions were 1.84 and 1.13 mmol g-1 for Cu(II) and 3.86 and 0.98 mmol g-1 for Cr(VI), respectively. The reuse of C1 was investigated, with Cu(II) ions being almost completely desorbed and fully re-adsorbed. For Cr(VI), the desorption was incomplete resulting in a lower re-adsorption. Energy-dispersive X-ray spectroscopy was used for mapping the distributions of Cr(VI) and Cu(II) adsorbed on the C1 surface in single and binary adsorption systems. Isothermal titration calorimetry experiments were performed for Cr(VI) and Cu(II) adsorption in single solutions. The thermodynamic parameters of adsorption showed that the adsorption of both metal ions was enthalpically driven, but entropically unfavorable.
Assuntos
Quitosana , Poluentes Químicos da Água , Adsorção , Cromo/análise , Cobre/análise , Concentração de Íons de Hidrogênio , Cinética , PiridinasRESUMO
The Ensembl project has been aggregating, processing, integrating and redistributing genomic datasets since the initial releases of the draft human genome, with the aim of accelerating genomics research through rapid open distribution of public data. Large amounts of raw data are thus transformed into knowledge, which is made available via a multitude of channels, in particular our browser (http://www.ensembl.org). Over time, we have expanded in multiple directions. First, our resources describe multiple fields of genomics, in particular gene annotation, comparative genomics, genetics and epigenomics. Second, we cover a growing number of genome assemblies; Ensembl Release 90 contains exactly 100. Third, our databases feed simultaneously into an array of services designed around different use cases, ranging from quick browsing to genome-wide bioinformatic analysis. We present here the latest developments of the Ensembl project, with a focus on managing an increasing number of assemblies, supporting efforts in genome interpretation and improving our browser.
Assuntos
Bases de Dados Genéticas , Conjuntos de Dados como Assunto , Genoma , Disseminação de Informação , Animais , Epigenômica , Genoma Humano , Estudo de Associação Genômica Ampla , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Anotação de Sequência Molecular , Vertebrados/genética , NavegadorRESUMO
The NHGRI-EBI GWAS Catalog has provided data from published genome-wide association studies since 2008. In 2015, the database was redesigned and relocated to EMBL-EBI. The new infrastructure includes a new graphical user interface (www.ebi.ac.uk/gwas/), ontology supported search functionality and an improved curation interface. These developments have improved the data release frequency by increasing automation of curation and providing scaling improvements. The range of available Catalog data has also been extended with structured ancestry and recruitment information added for all studies. The infrastructure improvements also support scaling for larger arrays, exome and sequencing studies, allowing the Catalog to adapt to the needs of evolving study design, genotyping technologies and user needs in the future.
Assuntos
Bases de Dados de Ácidos Nucleicos , Estudo de Associação Genômica Ampla/métodos , Software , Mineração de Dados , Genômica/métodos , Humanos , Anotação de Sequência Molecular , National Human Genome Research Institute (U.S.) , Estados Unidos , Interface Usuário-Computador , NavegadorRESUMO
Ensembl (www.ensembl.org) is a database and genome browser for enabling research on vertebrate genomes. We import, analyse, curate and integrate a diverse collection of large-scale reference data to create a more comprehensive view of genome biology than would be possible from any individual dataset. Our extensive data resources include evidence-based gene and regulatory region annotation, genome variation and gene trees. An accompanying suite of tools, infrastructure and programmatic access methods ensure uniform data analysis and distribution for all supported species. Together, these provide a comprehensive solution for large-scale and targeted genomics applications alike. Among many other developments over the past year, we have improved our resources for gene regulation and comparative genomics, and added CRISPR/Cas9 target sites. We released new browser functionality and tools, including improved filtering and prioritization of genome variation, Manhattan plot visualization for linkage disequilibrium and eQTL data, and an ontology search for phenotypes, traits and disease. We have also enhanced data discovery and access with a track hub registry and a selection of new REST end points. All Ensembl data are freely released to the scientific community and our source code is available via the open source Apache 2.0 license.
Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Genômica/métodos , Ferramenta de Busca , Software , Navegador , Animais , Mineração de Dados , Evolução Molecular , Regulação da Expressão Gênica , Variação Genética , Genoma Humano , Humanos , Anotação de Sequência Molecular , Especificidade da Espécie , VertebradosRESUMO
The Ensembl project (http://www.ensembl.org) is a system for genome annotation, analysis, storage and dissemination designed to facilitate the access of genomic annotation from chordates and key model organisms. It provides access to data from 87 species across our main and early access Pre! websites. This year we introduced three newly annotated species and released numerous updates across our supported species with a concentration on data for the latest genome assemblies of human, mouse, zebrafish and rat. We also provided two data updates for the previous human assembly, GRCh37, through a dedicated website (http://grch37.ensembl.org). Our tools, in particular the VEP, have been improved significantly through integration of additional third party data. REST is now capable of larger-scale analysis and our regulatory data BioMart can deliver faster results. The website is now capable of displaying long-range interactions such as those found in cis-regulated datasets. Finally we have launched a website optimized for mobile devices providing views of genes, variants and phenotypes. Our data is made available without restriction and all code is available from our GitHub organization site (http://github.com/Ensembl) under an Apache 2.0 license.
Assuntos
Bases de Dados Genéticas , Genômica , Anotação de Sequência Molecular , Animais , Genes , Variação Genética , Humanos , Internet , Camundongos , Proteínas/genética , Ratos , Sequências Reguladoras de Ácido Nucleico , SoftwareRESUMO
Ensembl (http://www.ensembl.org) is a genomic interpretation system providing the most up-to-date annotations, querying tools and access methods for chordates and key model organisms. This year we released updated annotation (gene models, comparative genomics, regulatory regions and variation) on the new human assembly, GRCh38, although we continue to support researchers using the GRCh37.p13 assembly through a dedicated site (http://grch37.ensembl.org). Our Regulatory Build has been revamped to identify regulatory regions of interest and to efficiently highlight their activity across disparate epigenetic data sets. A number of new interfaces allow users to perform large-scale comparisons of their data against our annotations. The REST server (http://rest.ensembl.org), which allows programs written in any language to query our databases, has moved to a full service alongside our upgraded website tools. Our online Variant Effect Predictor tool has been updated to process more variants and calculate summary statistics. Lastly, the WiggleTools package enables users to summarize large collections of data sets and view them as single tracks in Ensembl. The Ensembl code base itself is more accessible: it is now hosted on our GitHub organization page (https://github.com/Ensembl) under an Apache 2.0 open source license.
Assuntos
Bases de Dados de Ácidos Nucleicos , Genômica , Animais , Epigênese Genética , Variação Genética , Genoma Humano , Humanos , Internet , Camundongos , Anotação de Sequência Molecular , Sequências Reguladoras de Ácido Nucleico , SoftwareRESUMO
Locus Reference Genomic (LRG; http://www.lrg-sequence.org/) records contain internationally recognized stable reference sequences designed specifically for reporting clinically relevant sequence variants. Each LRG is contained within a single file consisting of a stable 'fixed' section and a regularly updated 'updatable' section. The fixed section contains stable genomic DNA sequence for a genomic region, essential transcripts and proteins for variant reporting and an exon numbering system. The updatable section contains mapping information, annotation of all transcripts and overlapping genes in the region and legacy exon and amino acid numbering systems. LRGs provide a stable framework that is vital for reporting variants, according to Human Genome Variation Society (HGVS) conventions, in genomic DNA, transcript or protein coordinates. To enable translation of information between LRG and genomic coordinates, LRGs include mapping to the human genome assembly. LRGs are compiled and maintained by the National Center for Biotechnology Information (NCBI) and European Bioinformatics Institute (EBI). LRG reference sequences are selected in collaboration with the diagnostic and research communities, locus-specific database curators and mutation consortia. Currently >700 LRGs have been created, of which >400 are publicly available. The aim is to create an LRG for every locus with clinical implications.
Assuntos
Bases de Dados Genéticas , Variação Genética , Genoma Humano , Éxons , Loci Gênicos , Genômica/normas , Humanos , Internet , Proteínas/genética , RNA Mensageiro/química , Padrões de ReferênciaRESUMO
Ensembl (http://www.ensembl.org) creates tools and data resources to facilitate genomic analysis in chordate species with an emphasis on human, major vertebrate model organisms and farm animals. Over the past year we have increased the number of species that we support to 77 and expanded our genome browser with a new scrollable overview and improved variation and phenotype views. We also report updates to our core datasets and improvements to our gene homology relationships from the addition of new species. Our REST service has been extended with additional support for comparative genomics and ontology information. Finally, we provide updated information about our methods for data access and resources for user training.
Assuntos
Bases de Dados Genéticas , Genômica , Animais , Cordados/genética , Variação Genética , Humanos , Internet , Camundongos , Anotação de Sequência Molecular , Fenótipo , RatosRESUMO
The Ensembl project (http://www.ensembl.org) provides genome information for sequenced chordate genomes with a particular focus on human, mouse, zebrafish and rat. Our resources include evidenced-based gene sets for all supported species; large-scale whole genome multiple species alignments across vertebrates and clade-specific alignments for eutherian mammals, primates, birds and fish; variation data resources for 17 species and regulation annotations based on ENCODE and other data sets. Ensembl data are accessible through the genome browser at http://www.ensembl.org and through other tools and programmatic interfaces.
Assuntos
Bases de Dados Genéticas , Genômica , Animais , Regulação da Expressão Gênica , Variação Genética , Humanos , Internet , Camundongos , Anotação de Sequência Molecular , Ratos , Software , Peixe-Zebra/genéticaRESUMO
The Ensembl project (http://www.ensembl.org) provides genome resources for chordate genomes with a particular focus on human genome data as well as data for key model organisms such as mouse, rat and zebrafish. Five additional species were added in the last year including gibbon (Nomascus leucogenys) and Tasmanian devil (Sarcophilus harrisii) bringing the total number of supported species to 61 as of Ensembl release 64 (September 2011). Of these, 55 species appear on the main Ensembl website and six species are provided on the Ensembl preview site (Pre!Ensembl; http://pre.ensembl.org) with preliminary support. The past year has also seen improvements across the project.
Assuntos
Bases de Dados Genéticas , Genômica , Animais , Regulação da Expressão Gênica , Variação Genética , Humanos , Camundongos , Anotação de Sequência Molecular , RatosRESUMO
In this study sugarcane bagasse was modified with succinic anhydride and EDTA dianhydride to obtain SCB 2 and EB adsorbents, respectively. These adsorbents were used to remove etherdiamine, which is used for iron ore flotation from single aqueous solutions. The removal and recovery of etherdiamine is important for environmental and economic reasons due to its toxicity and high cost. The results demonstrated that adsorption of etherdiamine by SCB 2 and EB was better fitted by a pseudo-second-order kinetic model than pseudo-first-order and Elovich models. Adsorption isotherms were better fitted by the Langmuir model rather than the Freundlich, Sips, and Temkin models. The maximum adsorption capacities (Qmax) of SCB 2 and EB for etherdiamine adsorption were found to be 869.6 and 1203.5 mg/g, respectively. The calculated ΔG° values for adsorption of etherdiamine on SCB 2 (-22.70 kJ/mol) and EB (-19.10 kJ/mol) suggested that chemisorption is the main mechanism by which etherdiamine is removed from the aqueous solution for both adsorbents. The high Qmax values showed that SCB 2 and EB are potential adsorbents for recovering the etherdiamine and treating effluents produced from iron ore flotation.
Assuntos
Diaminas/química , Saccharum/química , Soluções/química , Água/química , Adsorção , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
Polygenic scores (PGS) have transformed human genetic research and have multiple potential clinical applications, including risk stratification for disease prevention and prediction of treatment response. Here, we present a series of recent enhancements to the PGS Catalog (www.PGSCatalog.org), the largest findable, accessible, interoperable, and reusable (FAIR) repository of PGS. These include expansions in data content and ancestral diversity as well as the addition of new features. We further present the PGS Catalog Calculator (pgsc_calc, https://github.com/PGScatalog/pgsc_calc), an open-source, scalable and portable pipeline to reproducibly calculate PGS that securely democratizes equitable PGS applications by implementing genetic ancestry estimation and score normalization using reference data. With the PGS Catalog & calculator users can now quantify an individual's genetic predisposition for hundreds of common diseases and clinically relevant traits. Taken together, these updates and tools facilitate the next generation of PGS, thus lowering barriers to the clinical studies necessary to identify where PGS may be integrated into clinical practice.
RESUMO
In this study the adsorption of cationic dyes by modified sugarcane bagasse with EDTA dianhydride (EB) was examined using methylene blue (MB) and gentian violet (GV) as model compounds in aqueous single solutions. The synthesized adsorbent (EB) was characterized by FTIR, elemental analysis, and BET. The capacity of EB to adsorb dyes was evaluated at different contact times, pH values, and initial dye concentrations. According to the obtained results, the adsorption processes could be described by a pseudo-second-order kinetic model. The adsorption isotherms were well fitted by the Langmuir model. Maximum adsorption capacities for MB and GV on EB were found to be 202.43 and 327.83 mg/g, respectively. The free energy change during adsorption of MB and GV was found to be -22.50 and -24.21 kJ/mol, respectively, suggesting that chemisorption is the main mechanism controlling the adsorption process.
Assuntos
Celulose/química , Corantes/química , Ácido Edético/química , Anidridos Succínicos/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Adsorção , Cátions/química , Violeta Genciana/química , Concentração de Íons de Hidrogênio , Cinética , Azul de Metileno/química , Modelos Teóricos , Saccharum/química , Espectroscopia de Infravermelho com Transformada de Fourier , Fatores de TempoRESUMO
This study describes the synthesis of a new bioadsorbent with zwitterionic characteristics and its successful application for removal of a cationic dye (crystal violet, CV) and an anionic dye (orange II, OII) from single component aqueous systems. The new bi-functionalized cellulose derivative (MC3) was produced by chemical modification of cellulose with succinic anhydride and choline chloride to introduce carboxylic and quaternary ammonium functional groups on the cellulose surface. MC3 was characterized by several wet chemical and spectroscopic methods. The effects of solution pH, contact time, and initial solute concentration on removal of CV and OII by MC3 were investigated. Studies of the desorption and re-adsorption of the dyes were also carried out. The isotherms for adsorption of CV and OII on MC3 were satisfactorily fitted using the Konda and Langmuir models. MC3 showed experimental maximum adsorption capacities of 2403 mg g-1 for CV and 201 mg g-1 for OII. The desorption and re-adsorption results showed that MC3 could be reused in successive adsorption cycles, which is essential for minimizing process costs and waste generation. The findings showed that MC3 is a versatile biosorbent capable of efficiently removing both cationic and anionic dyes.
Assuntos
Violeta Genciana , Poluentes Químicos da Água , Adsorção , Compostos Azo , Benzenossulfonatos , Celulose , Corantes , Concentração de Íons de Hidrogênio , CinéticaRESUMO
BACKGROUND: Improvements in the techniques for metabolomics analyses and growing interest in metabolomic approaches are resulting in the generation of increasing numbers of metabolomic profiles. Platforms are required for profile management, as a function of experimental design, and for metabolite identification, to facilitate the mining of the corresponding data. Various databases have been created, including organism-specific knowledgebases and analytical technique-specific spectral databases. However, there is currently no platform meeting the requirements for both profile management and metabolite identification for nuclear magnetic resonance (NMR) experiments. DESCRIPTION: MeRy-B, the first platform for plant (1)H-NMR metabolomic profiles, is designed (i) to provide a knowledgebase of curated plant profiles and metabolites obtained by NMR, together with the corresponding experimental and analytical metadata, (ii) for queries and visualization of the data, (iii) to discriminate between profiles with spectrum visualization tools and statistical analysis, (iv) to facilitate compound identification. It contains lists of plant metabolites and unknown compounds, with information about experimental conditions, the factors studied and metabolite concentrations for several plant species, compiled from more than one thousand annotated NMR profiles for various organs or tissues. CONCLUSION: MeRy-B manages all the data generated by NMR-based plant metabolomics experiments, from description of the biological source to identification of the metabolites and determinations of their concentrations. It is the first database allowing the display and overlay of NMR metabolomic profiles selected through queries on data or metadata. MeRy-B is available from http://www.cbib.u-bordeaux2.fr/MERYB/index.php.