Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS Pathog ; 19(6): e1011432, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37311004

RESUMO

BACKGROUND: SARS-CoV-2 emerged as a new coronavirus causing COVID-19, and it has been responsible for more than 760 million cases and 6.8 million deaths worldwide until March 2023. Although infected individuals could be asymptomatic, other patients presented heterogeneity and a wide range of symptoms. Therefore, identifying those infected individuals and being able to classify them according to their expected severity could help target health efforts more effectively. METHODOLOGY/PRINCIPAL FINDINGS: Therefore, we wanted to develop a machine learning model to predict those who will develop severe disease at the moment of hospital admission. We recruited 75 individuals and analysed innate and adaptive immune system subsets by flow cytometry. Also, we collected clinical and biochemical information. The objective of the study was to leverage machine learning techniques to identify clinical features associated with disease severity progression. Additionally, the study sought to elucidate the specific cellular subsets involved in the disease following the onset of symptoms. Among the several machine learning models tested, we found that the Elastic Net model was the better to predict the severity score according to a modified WHO classification. This model was able to predict the severity score of 72 out of 75 individuals. Besides, all the machine learning models revealed that CD38+ Treg and CD16+ CD56neg HLA-DR+ NK cells were highly correlated with the severity. CONCLUSIONS/SIGNIFICANCE: The Elastic Net model could stratify the uninfected individuals and the COVID-19 patients from asymptomatic to severe COVID-19 patients. On the other hand, these cellular subsets presented here could help to understand better the induction and progression of the symptoms in COVID-19 individuals.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Hospitalização , Citometria de Fluxo , Hospitais
2.
Molecules ; 28(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37375437

RESUMO

Neuroinflammation plays a crucial role in the progression of Alzheimer's disease and other neurodegenerative disorders. Overactivated microglia cause neurotoxicity and prolong the inflammatory response in many neuropathologies. In this study, we have synthesised a series of isatin derivatives to evaluate their anti-neuroinflammatory potential using lipopolysaccharide activated microglia as a cell model. We explored four different substitutions of the isatin moiety by testing their anti-neuroinflammatory activity on BV2 microglia cells. Based on the low cytotoxicity and the activity in reducing the release of nitric oxide, pro-inflammatory interleukin 6 and tumour necrosis factor α by microglial cells, the N1-alkylated compound 10 and the chlorinated 20 showed the best results at 25 µM. Taken together, the data suggest that 10 and 20 are promising lead compounds for developing new neuroprotective agents.


Assuntos
Isatina , Fármacos Neuroprotetores , Humanos , Anti-Inflamatórios/farmacologia , Microglia/metabolismo , Isatina/farmacologia , Doenças Neuroinflamatórias , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Óxido Nítrico/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fármacos Neuroprotetores/farmacologia
3.
Front Immunol ; 15: 1341313, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38404583

RESUMO

The development of mRNA vaccines represented a significant achievement in response to the global health crisis during the SARS-CoV-2 pandemic. Evaluating vaccine efficacy entails identifying different anti-SARS-CoV-2 antibodies, such as total antibodies against the Receptor Binding Domain (RBD) of the S-protein, or neutralizing antibodies (NAbs). This study utilized an innovative PETIA-based kit to measure NAb, and the investigation aimed to assess whether levels of anti-RBD IgG and NAb uniformly measured 30 days after vaccination could predict individuals at a higher risk of subsequent infection in the months following vaccination. Among a cohort of healthy vaccinated healthcare workers larger than 6,000, 12 mRNA-1273- and 115 BNT162b2-vaccinated individuals contracted infections after the first two doses. The main finding is that neither anti-RBD IgG nor NAb levels measured at day 30 post-vaccination can be used as predictors of breakthrough infections (BI). Therefore, the levels of anti-SARS-CoV-2 antibodies detected shortly after vaccination are not the pivotal factors involved in antiviral protection, and other characteristics must be considered in understanding protection against infection. Furthermore, the levels of anti-RBD and NAbs followed a very similar pattern, with a correlation coefficient of r = 0.96. This robust correlation would justify ceasing the quantification of NAbs, as the information provided by both determinations is highly similar. This optimization would help allocate resources more efficiently and speed up the determination of individuals' humoral immunity status.


Assuntos
Anticorpos Neutralizantes , COVID-19 , Humanos , SARS-CoV-2 , Vacina BNT162 , Infecções Irruptivas , COVID-19/prevenção & controle , Anticorpos Antivirais , RNA Mensageiro , Vacinação , Imunoglobulina G
4.
Front Cell Infect Microbiol ; 12: 1035155, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36530428

RESUMO

Introduction: Since the COVID-19 outbreak, specific mRNA-based anti-SARS-CoV-2 vaccines have been developed and distributed worldwide. Because this is the first time that mRNA vaccines have been used, there are several questions regarding their capacity to confer immunity and the durability of the specific anti-SARS-CoV-2 response. Therefore, the objective of this study was to recruit a large cohort of healthcare workers from the Gregorio Marañón Hospital vaccinated with the mRNA-1273 or BNT126b2 vaccines and to follow-up on IgG anti-RBD levels at 8 months post-vaccination. Methods: We recruited 4,970 volunteers and measured IgG anti-RBD antibodies on days 30 and 240 post-vaccination. Results: We observed that both vaccines induced high levels of antibodies on day 30, while a drastic wane was observed on day 240, where mRNA-1273 vaccinated induced higher levels than BNT162b2. Stratifying by vaccine type, age, gender, and comorbidities, we identified that older mRNA-1273-vaccinated volunteers had higher antibody levels than the younger volunteers, contrary to what was observed in the BNT162b2-vaccinated volunteers. Discussion: In conclusion, we observed that mRNA-1273 has a higher capacity to induce a humoral response than BNT162b2 and that age is a factor in the specific response.


Assuntos
Vacina BNT162 , COVID-19 , Humanos , Vacinas de mRNA , Vacina de mRNA-1273 contra 2019-nCoV , Seguimentos , COVID-19/prevenção & controle , Vacinação , Pessoal de Saúde , Imunoglobulina G , Anticorpos Antivirais
5.
Biomedicines ; 10(7)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35884980

RESUMO

Vaccination against SARS-CoV-2 has become the main method of reducing mortality and severity of COVID-19. This work aims to study the evolution of the cellular and humoral responses conferred by two mRNA vaccines after two doses against SARS-CoV-2. On days 30 and 240 after the second dose of both vaccines, the anti-S antibodies in plasma were evaluated from 82 volunteers vaccinated with BNT162b2 and 68 vaccinated with mRNA-1273. Peripheral blood was stimulated with peptides encompassing the entire SARS-CoV-2 Spike sequence. IgG Anti-S antibodies (humoral) were quantified on plasma, and inflammatory cytokines (cellular) were measured after stimulation. We observed a higher response (both humoral and cellular) with the mRNA-1273 vaccine. Stratifying by age and gender, differences between vaccines were observed, especially in women under 48 and men over 48 years old. Therefore, this work could help to set up a vaccination strategy that could be applied to confer maximum immunity.

6.
Virulence ; 13(1): 30-45, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34967260

RESUMO

Since December 2019, the coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread throughout the world. To eradicate it, it is crucial to acquire a strong and long-lasting anti-SARS-CoV-2 immunity, by either natural infection or vaccination. We collected blood samples 12-305 days after positive polymerase chain reactions (PCRs) from 35 recovered individuals infected by SARS-CoV-2. Peripheral blood mononuclear cells were stimulated with SARS-CoV-2-derived peptide pools, such as the spike (S), nucleocapsid (N) and membrane (M) proteins, and we quantified anti-S immunoglobulins in plasma. After 10 months post-infection, we observed a sustained SARS-CoV-2-specific CD4+ T-cell response directed against M-protein, but responses against S- or N-proteins were lost over time. Besides, we demonstrated that O-group individuals presented significantly lower frequencies of specific CD4+ T-cell responses against Pep-M than non O-group individuals. The non O-group subjects also needed longer to clear the virus, and they lost cellular immune responses over time, compared to the O-group individuals, who showed a persistent specific immune response against SARS-CoV-2. Therefore, the S-specific immune response was lost over time, and individual factors might determine the sustainability of the body's defenses, which must be considered in the future design of vaccines to achieve continuous anti-SARS-CoV-2 immunity.


Assuntos
Sistema ABO de Grupos Sanguíneos , COVID-19/sangue , Imunidade Humoral , Células T de Memória , SARS-CoV-2/imunologia , Humanos , Imunidade Celular , Leucócitos Mononucleares , Glicoproteína da Espícula de Coronavírus
7.
Front Immunol ; 12: 793142, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069575

RESUMO

SARS-CoV-2 has infected more than 200 million people worldwide, with more than 4 million associated deaths. Although more than 80% of infected people develop asymptomatic or mild COVID-19, SARS-CoV-2 can induce a profound dysregulation of the immune system. Therefore, it is important to investigate whether clinically recovered individuals present immune sequelae. The potential presence of a long-term dysregulation of the immune system could constitute a risk factor for re-infection and the development of other pathologies. Here, we performed a deep analysis of the immune system in 35 COVID-19 recovered individuals previously infected with SARS-CoV-2 compared to 16 healthy donors, by flow cytometry. Samples from COVID-19 individuals were analysed from 12 days to 305 days post-infection. We observed that, 10 months post-infection, recovered COVID-19 patients presented alterations in the values of some T-cell, B-cell, and innate cell subsets compared to healthy controls. Moreover, we found in recovered COVID-19 individuals increased levels of circulating follicular helper type 1 (cTfh1), plasmablast/plasma cells, and follicular dendritic cells (foDC), which could indicate that the Tfh-B-foDC axis might be functional to produce specific immunoglobulins 10 months post-infection. The presence of this axis and the immune system alterations could constitute prognosis markers and could play an important role in potential re-infection or the presence of long-term symptoms in some individuals.


Assuntos
COVID-19/imunologia , Convalescença , Células Dendríticas Foliculares/imunologia , Citometria de Fluxo/métodos , Pessoal de Saúde , Ativação Linfocitária/imunologia , Plasmócitos/imunologia , SARS-CoV-2/genética , Células T Auxiliares Foliculares/imunologia , Adulto , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , COVID-19/sangue , COVID-19/virologia , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase/métodos , Prognóstico , Adulto Jovem
8.
Front Immunol ; 12: 726960, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34671348

RESUMO

Objectives: In the context of the Covid-19 pandemic, the fast development of vaccines with efficacy of around 95% preventing Covid-19 illness provides a unique opportunity to reduce the mortality associated with the pandemic. However, in the absence of efficacious prophylactic medications and few treatments for this infection, the induction of a fast and robust protective immunity is required for effective disease control, not only to prevent the disease but also the infection and shedding/transmission. The objective of our study was to analyze the level of specific humoral and cellular T-cell responses against the spike protein of SARS-CoV-2 induced by two mRNA-based vaccines (BNT162b2 and mRNA-1273), but also how long it takes after vaccination to induce these protective humoral and cellular immune responses. Methods: We studied in 40 healthy (not previously infected) volunteers vaccinated with BNT162b2 or mRNA-1273 vaccines the presence of spike-specific IgG antibodies and SARS-CoV-2-specific T cells at 3, 7 and 14 days after receiving the second dose of the vaccine. The specific T-cell response was analyzed stimulating fresh whole blood from vaccinated volunteers with SARS-CoV-2 peptides and measuring the release of cytokines secreted by T cells in response to SARS-CoV-2 stimulation. Results: Our results indicate that the immunization capacity of both vaccines is comparable. However, although both BNT162b2 and mRNA-1273 vaccines can induce early B-cell and T-cell responses, these vaccine-mediated immune responses do not reach their maximum values until 14 days after completing the vaccination schedule. Conclusion: This refractory period in the induction of specific immunity observed after completing the vaccination could constitute a window of higher infection risk, which could explain some emerging cases of SARS-CoV-2 infection in vaccinated people.


Assuntos
Anticorpos Antivirais/sangue , Vacinas contra COVID-19/imunologia , Imunogenicidade da Vacina/imunologia , SARS-CoV-2/imunologia , Linfócitos T/imunologia , Vacina de mRNA-1273 contra 2019-nCoV , Adulto , Anticorpos Neutralizantes/imunologia , Vacina BNT162 , COVID-19/prevenção & controle , Feminino , Humanos , Imunidade Celular/imunologia , Imunidade Humoral/imunologia , Esquemas de Imunização , Imunoglobulina G/sangue , Contagem de Linfócitos , Masculino , Estudos Prospectivos , Vacinação
9.
Biomedicines ; 9(5)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922629

RESUMO

Regulatory T cells (Tregs), which are characterized by the expression of the transcription factor forkhead box P3 (FOXP3), are the main immune cells that induce tolerance and are regulators of immune homeostasis. Natural Treg cells (nTregs), described as CD4+CD25+FOXP3+, are generated in the thymus via activation and cytokine signaling. Transforming growth factor beta type 1 (TGF-ß1) is pivotal to the generation of the nTreg lineage, its maintenance in the thymus, and to generating induced Treg cells (iTregs) in the periphery or in vitro arising from conventional T cells (Tconvs). Here, we tested whether TGF-ß1 treatment, associated with interleukin-2 (IL-2) and CD3/CD28 stimulation, could generate functional Treg-like cells from human thymocytes in vitro, as it does from Tconvs. Additionally, we genetically manipulated the cells for ectopic FOXP3 expression, along with the TGF-ß1 treatment. We demonstrated that TGF-ß1 and ectopic FOXP3, combined with IL-2 and through CD3/CD28 activation, transformed human thymocytes into cells that expressed high levels of Treg-associated markers. However, these cells also presented a lack of homogeneous suppressive function and an unstable proinflammatory cytokine profile. Therefore, thymocyte-derived cells, activated with the same stimuli as Tconvs, were not an appropriate alternative for inducing cells with a Treg-like phenotype and function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA