Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 17(2): e1009308, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33534855

RESUMO

Aerosol exposure to eastern equine encephalitis virus (EEEV) can trigger a lethal viral encephalitis in cynomolgus macaques which resembles severe human disease. Biomarkers indicative of central nervous system (CNS) infection by the virus and lethal outcome of disease would be useful in evaluating potential medical countermeasures, especially for therapeutic compounds. To meet requirements of the Animal Rule, a better understanding of the pathophysiology of EEEV-mediated disease in cynomolgus macaques is needed. In this study, macaques given a lethal dose of clone-derived EEEV strain V105 developed a fever between 2-3 days post infection (dpi) and succumbed to the disease by 6 dpi. At the peak of the febrile phase, there was a significant increase in the delta electroencephalography (EEG) power band associated with deep sleep as well as a sharp rise in intracranial pressure (ICP). Viremia peaked early after infection and was largely absent by the onset of fever. Granulocytosis and elevated plasma levels of IP-10 were found early after infection. At necropsy, there was a one hundred- to one thousand-fold increase in expression of traumatic brain injury genes (LIF, MMP-9) as well as inflammatory cytokines and chemokines (IFN-γ, IP-10, MCP-1, IL-8, IL-6) in the brain tissues. Phenotypic analysis of leukocytes entering the brain identified cells as primarily lymphoid (T, B, NK cells) with lower levels of infiltrating macrophages and activated microglia. Massive amounts of infectious virus were found in the brains of lethally-infected macaques. While no infectious virus was found in surviving macaques, quantitative PCR did find evidence of viral genomes in the brains of several survivors. These data are consistent with an overwhelming viral infection in the CNS coupled with a tremendous inflammatory response to the infection that may contribute to the disease outcome. Physiological monitoring of EEG and ICP represent novel methods for assessing efficacy of vaccines or therapeutics in the cynomolgus macaque model of EEEV encephalitis.


Assuntos
Aerossóis/efeitos adversos , Biomarcadores/análise , Encéfalo/imunologia , Encéfalo/patologia , Vírus da Encefalite Equina do Leste/patogenicidade , Encefalite Viral/imunologia , Febre/imunologia , Animais , Encéfalo/virologia , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalite Viral/patologia , Encefalite Viral/virologia , Feminino , Febre/patologia , Febre/virologia , Macaca fascicularis , Masculino
2.
PLoS Pathog ; 16(9): e1008903, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32946524

RESUMO

Vaccines are urgently needed to combat the global coronavirus disease 2019 (COVID-19) pandemic, and testing of candidate vaccines in an appropriate non-human primate (NHP) model is a critical step in the process. Infection of African green monkeys (AGM) with a low passage human isolate of SARS-CoV-2 by aerosol or mucosal exposure resulted in mild clinical infection with a transient decrease in lung tidal volume. Imaging with human clinical-grade 18F-fluoro-2-deoxy-D-glucose positron emission tomography (18F-FDG PET) co-registered with computed tomography (CT) revealed pulmonary lesions at 4 days post-infection (dpi) that resolved over time. Infectious virus was shed from both respiratory and gastrointestinal (GI) tracts in all animals in a biphasic manner, first between 2-7 dpi followed by a recrudescence at 14-21 dpi. Viral RNA (vRNA) was found throughout both respiratory and gastrointestinal systems at necropsy with higher levels of vRNA found within the GI tract tissues. All animals seroconverted simultaneously for IgM and IgG, which has also been documented in human COVID-19 cases. Young AGM represent an species to study mild/subclinical COVID-19 disease and with possible insights into live virus shedding. Future vaccine evaluation can be performed in AGM with correlates of efficacy being lung lesions by PET/CT, virus shedding, and tissue viral load.


Assuntos
Betacoronavirus , Infecções por Coronavirus/diagnóstico por imagem , Trato Gastrointestinal/virologia , Pneumonia Viral/diagnóstico por imagem , Eliminação de Partículas Virais/fisiologia , Animais , COVID-19 , Chlorocebus aethiops , Infecções por Coronavirus/virologia , Pulmão/patologia , Pulmão/virologia , Pandemias , Pneumonia Viral/virologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA