Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Med Chem ; 67(4): 2619-2630, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38294341

RESUMO

Targeting microtubules is the most effective wide-spectrum pharmacological strategy in antitumoral chemotherapy, and current research focuses on reducing main drawbacks: neurotoxicity and resistance. PM534 is a novel synthetic compound derived from the Structure-Activity-Relationship study on the natural molecule PM742, isolated from the sponge of the order Lithistida, family Theonellidae, genus Discodermia (du Bocage 1869). PM534 targets the entire colchicine binding domain of tubulin, covering four of the five centers of the pharmacophore model. Its nanomolar affinity and high retention time modulate a strikingly high antitumor activity that efficiently overrides two resistance mechanisms in cells (detoxification pumps and tubulin ßIII isotype overexpression). Furthermore, PM534 induces significant inhibition of tumor growth in mouse xenograft models of human non-small cell lung cancer. Our results present PM534, a highly effective new compound in the preclinical evaluation that is currently in its first human Phase I clinical trial.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Colchicina/metabolismo , Tubulina (Proteína)/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Microtúbulos , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/uso terapêutico , Moduladores de Tubulina/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células
2.
Methods Mol Biol ; 1703: 191-215, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29177744

RESUMO

For analyzing chromosome structural defects that result from topoisomerase II (topo II) dysfunction we have adapted classical cell cycle experiments, classical cytological techniques and the use of a potent topo II inhibitor (ICRF-193). In this chapter, we describe in detail the protocols used and we discuss the rational for our choice and for the adaptations applied. We clarify in which cell cycle stages each of the different chromosomal aberrations induced by inhibiting topo II takes place: lack of chromosome segregation, undercondensation, lack of sister chromatid resolution, and lack of chromosome individualization. We also put these observations into the context of the two topo II-dependent cell cycle checkpoints. In addition, we have devised a system to analyze phenotypes that result when topo II is mutated in human cells. This serves as an alternative strategy to the use of topo II inhibitors to perturb topo II function.


Assuntos
Cromossomos Humanos/química , DNA Topoisomerases Tipo II/metabolismo , Mutação , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Inibidores da Topoisomerase II/farmacologia , Pontos de Checagem do Ciclo Celular , Aberrações Cromossômicas , Cromossomos Humanos/efeitos dos fármacos , DNA Topoisomerases Tipo II/genética , Dicetopiperazinas , Células HEK293 , Células HeLa , Humanos , Mitose/efeitos dos fármacos , Fenótipo , Piperazinas/farmacologia , Proteínas de Ligação a Poli-ADP-Ribose/genética
3.
Curr Biol ; 12(16): 1368-78, 2002 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-12194817

RESUMO

BACKGROUND: Sister chromatid separation is initiated by separase, a protease that cleaves cohesin and thereby dissolves sister chromatid cohesion. Separase is activated by the degradation of its inhibitor securin and by the removal of inhibitory phosphates. In human cells, separase activation also coincides with the cleavage of separase, but it is not known if this reaction activates separase, which protease cleaves separase, and how separase cleavage is regulated. RESULTS: Inhibition of separase expression in human cells by RNA interference causes the formation of polyploid cells with large lobed nuclei. In mitosis, many of these cells contain abnormal chromosome plates with unseparated sister chromatids. Inhibitor binding experiments in vitro reveal that securin prevents the access of substrate analogs to the active site of separase. Upon securin degradation, the active site of full-length separase becomes accessible, allowing rapid autocatalytic cleavage of separase at one of three sites. The resulting N- and C-terminal fragments remain associated and can be reinhibited by securin. A noncleavable separase mutant retains its ability to cleave cohesin in vitro. CONCLUSIONS: Our results suggest that separase is required for sister chromatid separation during mitosis in human cells. Our data further indicate that securin inhibits separase by blocking the access of substrates to the active site of separase. Securin proteolysis allows autocatalytic processing of separase into a cleaved form, but separase cleavage is not essential for separase activation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromossomos/metabolismo , Endopeptidases , Proteínas de Neoplasias/metabolismo , Transativadores/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Ciclo Celular/antagonistas & inibidores , Núcleo Celular/metabolismo , Proteínas Cromossômicas não Histona , Ativação Enzimática , Inibidores Enzimáticos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Células HeLa , Humanos , Mitose/genética , Modelos Biológicos , Estrutura Molecular , Proteínas Nucleares , Peptídeos/metabolismo , Fosfoproteínas , Poliploidia , Ligação Proteica , Interferência de RNA , Proteínas de Saccharomyces cerevisiae , Securina , Separase , Alinhamento de Sequência
4.
Curr Biol ; 14(19): 1712-22, 2004 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-15458642

RESUMO

BACKGROUND: The stable association of chromosomes with both poles of the mitotic spindle (biorientation) depends on spindle pulling forces. These forces create tension across sister kinetochores and are thought to stabilize microtubule-kinetochore interactions and to silence the spindle checkpoint. Polo-like kinase 1 (Plk1) has been implicated in regulating centrosome maturation, mitotic entry, sister chromatid cohesion, the anaphase-promoting complex/cyclosome (APC/C), and cytokinesis, but it is unknown if Plk1 controls chromosome biorientation. RESULTS: We have analyzed Plk1 functions in synchronized mammalian cells by RNA interference (RNAi). Plk1-depleted cells enter mitosis after a short delay, accumulate in a preanaphase state, and subsequently often die by apoptosis. Spindles in Plk1-depleted cells lack focused poles and are not associated with centrosomes. Chromosomes attach to these spindles, but the checkpoint proteins Mad2, BubR1, and CENP-E are enriched at many kinetochores. When Plk1-depleted cells are treated with the Aurora B inhibitor Hesperadin, which silences the spindle checkpoint by stabilizing microtubule-kinetochore interactions, cells degrade APC/C substrates and exit mitosis without chromosome segregation and cytokinesis. Experiments with monopolar spindles that are induced by the kinesin inhibitor Monastrol indicate that Plk1 is required for the assembly of spindles that are able to generate poleward pulling forces. CONCLUSIONS: Our results imply that Plk1 is not essential for mitotic entry and APC/C activation but is required for proper spindle assembly and function. In Plk1-depleted cells spindles may not be able to create enough tension across sister kinetochores to stabilize microtubule-kinetochore interactions and to silence the spindle checkpoint.


Assuntos
Pareamento Cromossômico/fisiologia , Proteínas de Drosophila/metabolismo , Cinetocoros/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fuso Acromático/metabolismo , Ciclossomo-Complexo Promotor de Anáfase , Animais , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Proteínas de Drosophila/genética , Imunofluorescência , Células HeLa , Humanos , Immunoblotting , Indóis/metabolismo , Camundongos , Mitose/fisiologia , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , Ratos , Fuso Acromático/fisiologia , Sulfonamidas/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo
5.
Curr Biol ; 14(13): 1187-93, 2004 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-15242616

RESUMO

Sister chromatid separation in anaphase depends on the removal of cohesin complexes from chromosomes. In vertebrates, the bulk of cohesin is already removed from chromosome arms during prophase and prometaphase, whereas cohesin remains at centromeres until metaphase, when cohesin is cleaved by the protease separase. In unperturbed mitoses, arm cohesion nevertheless persists throughout metaphase and is principally sufficient to maintain sister chromatid cohesion. How arm cohesion is maintained until metaphase is unknown. Here we show that small amounts of cohesin can be detected in the interchromatid region of metaphase chromosome arms. If prometaphase is prolonged by treatment of cells with microtubule poisons, these cohesin complexes dissociate from chromosome arms, and arm cohesion is dissolved. If cohesin dissociation in prometaphase-arrested cells is prevented by depletion of Plk1 or inhibition of Aurora B, arm cohesion is maintained. These observations imply that, in unperturbed mitoses, small amounts of cohesin maintain arm cohesion until metaphase. When cells lacking Plk1 and Aurora B activity enter anaphase, chromatids lose cohesin. This loss is prevented by proteasome inhibitors, implying that it depends on separase activation. Separase may therefore be able to cleave cohesin at centromeres and on chromosome arms.


Assuntos
Cromátides/fisiologia , Cromossomos Humanos/fisiologia , Mitose/fisiologia , Modelos Biológicos , Proteínas Nucleares/metabolismo , Animais , Aurora Quinase B , Aurora Quinases , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas/citologia , Proteínas Cromossômicas não Histona , Endopeptidases/metabolismo , Proteínas Fúngicas , Células HeLa/citologia , Humanos , Immunoblotting , Metáfase/fisiologia , Microscopia de Fluorescência , Proteínas Nucleares/fisiologia , Proteínas Quinases , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas , Interferência de RNA , Ratos , Separase , Coesinas , Quinase 1 Polo-Like
6.
Prion ; 10(1): 41-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27040981

RESUMO

In bacterial plasmids, Rep proteins initiate DNA replication by undergoing a structural transformation coupled to dimer dissociation. Amyloidogenesis of the 'winged-helix' N-terminal domain of RepA (WH1) is triggered in vitro upon binding to plasmid-specific DNA sequences, and occurs at the bacterial nucleoid in vivo. Amyloid fibers are made of distorted RepA-WH1 monomers that assemble as single or double intertwined tubular protofilaments. RepA-WH1 causes in E. coli an amyloid proteinopathy, which is transmissible from mother to daughter cells, but not infectious, and enables conformational imprinting in vitro and in vivo; i.e. RepA-WH1 is a 'prionoid'. Microfluidics allow the assessment of the intracellular dynamics of RepA-WH1: bacterial lineages maintain two types (strains-like) of RepA-WH1 amyloids, either multiple compact cytotoxic particles or a single aggregate with the appearance of a fluidized hydrogel that it is mildly detrimental to growth. The Hsp70 chaperone DnaK governs the phase transition between both types of RepA-WH1 aggregates in vivo, thus modulating the vertical propagation of the prionoid. Engineering chimeras between the Sup35p/[PSI(+)] prion and RepA-WH1 generates [REP-PSI(+)], a synthetic prion exhibiting strong and weak phenotypic variants in yeast. These recent findings on a synthetic, self-contained bacterial prionoid illuminate central issues of protein amyloidogenesis.


Assuntos
Amiloide/química , Amiloide/metabolismo , DNA Helicases/química , DNA Helicases/metabolismo , Príons/química , Príons/metabolismo , Domínios Proteicos , Transativadores/química , Transativadores/metabolismo , Amiloide/ultraestrutura , DNA Helicases/ultraestrutura , DNA Bacteriano , Proteínas de Choque Térmico HSP70 , Conformação Proteica , Transativadores/ultraestrutura
7.
Cell Cycle ; 1(3): 187-92, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12429932

RESUMO

DNA topoisomerase II is required for mitotic chromosome condensation and segregation. Here we characterize the effects of inhibiting DNA topoisomerase II activity in plant cells using the non-DNA damaging topoisomerase II inhibitor ICRF-193. We report that ICRF-193 abrogated chromosome condensation in cultured alfalfa (Medicago sativa L.) and tobacco (Nicotiana tabaccum L.) mitoses and led to bridged chromosomes at anaphase. Moreover, ICRF-193 treatment delayed entry into mitosis, increasing the frequency of cells having a pre-prophase band of microtubules, a marker of late G2 and prophase, and delaying the activation of cyclin-dependent kinase. These data suggest the existence of a late G2 checkpoint in plant cells that is activated in the absence of topoisomerase II activity. To determine whether the checkpoint-induced delay was a result of reduced cyclindependent kinase activity, mitotic cyclin B2 was ectopically expressed. Cyclin B2 bypassed the ICRF-193-induced delay before mitosis, and correspondingly, reduced the frequency of interphase cells with a pre-prophase band. These data provide evidence that plant cells possess a topoisomerase II-dependent G2 cell cycle checkpoint that transiently inhibits mitotic CDK activation and entry into mitosis, and that is overridden by raising the level of CDK activity through the ectopic expression of a plant mitotic cyclin.


Assuntos
Ciclo Celular , Ciclina B/biossíntese , DNA Topoisomerases Tipo II/metabolismo , Fase G2 , Medicago sativa/metabolismo , Nicotiana/metabolismo , Piperazinas/farmacologia , Antineoplásicos/farmacologia , Cromossomos/metabolismo , Dicetopiperazinas , Inibidores Enzimáticos/farmacologia , Citometria de Fluxo , Microscopia de Fluorescência , Microtúbulos/efeitos dos fármacos , Mitose/efeitos dos fármacos , Plasmídeos/metabolismo , Fatores de Tempo
8.
Eur J Cell Biol ; 81(1): 9-16, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11893079

RESUMO

Treatment of Allium cepa meristematic cells in metaphase with the topoisomerase II inhibitor ICRF-193, results in bridging of the sister chromatids at anaphase. Separation of the sisters in experimentally generated acentric chromosomal fragments was also inhibited by ICRF-193, indicating that some non-centromeric catenations also persist in metaphase chromosomes. Thus, catenations must be resolved by DNA topoisomerase II at the metaphase-to-anaphase transition to allow segregation of sisters. A passive mechanism could maintain catenations holding sisters until the onset of anaphase. At this point the opposite tension exerted on sister chromatids could render the decatenation reaction physically more favorable than catenation. But this possibility was dismissed as acentric chromosome fragments were able to separate their sister chromatids at anaphase. A timing mechanism (a common trigger for two processes taking different times to be completed) could passively couple the resolution of the last remaining catenations to the moment of anaphase onset. This possibility was also discarded as cells arrested in metaphase with microtubule-destabilising drugs still displayed anaphase bridges when released in the presence of ICRF-193. It is possible that a checkpoint mechanism prevents the release of the last catenations linking sisters until the onset of anaphase. To test whether cells are competent to fully resolve catenations before anaphase onset, we generated multinucleate plant cells. In this system, the nuclei within a single multinucleate cell displayed differences in chromosome condensation at metaphase, but initiated anaphase synchronously. When multinucleates were treated with ICRF-193 at the metaphase-toanaphase transition, tangled and untangled anaphases were observed within the same cell. This can only occur if cells are competent to disentangle sister chromatids before the onset of anaphase, but are prevented from doing so by a checkpoint mechanism.


Assuntos
Anáfase/genética , Núcleo Celular/genética , Cromátides/genética , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Genes cdc/fisiologia , Cebolas/genética , Inibidores da Topoisomerase II , Anáfase/efeitos dos fármacos , Benzamidas/farmacologia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Núcleo Celular/efeitos dos fármacos , Cromátides/efeitos dos fármacos , Cromossomos/efeitos dos fármacos , Cromossomos/genética , Fragmentação do DNA/efeitos dos fármacos , Fragmentação do DNA/genética , DNA Topoisomerases Tipo II/metabolismo , DNA de Plantas/efeitos dos fármacos , Dicetopiperazinas , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes cdc/efeitos dos fármacos , Células Gigantes/citologia , Células Gigantes/efeitos dos fármacos , Células Gigantes/metabolismo , Hidroxiureia/farmacologia , Metáfase/efeitos dos fármacos , Metáfase/genética , Inibidores da Síntese de Ácido Nucleico/farmacologia , Cebolas/efeitos dos fármacos , Piperazinas/farmacologia
9.
J Cell Biol ; 203(3): 471-86, 2013 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-24217621

RESUMO

DNA topoisomerase IIα (Topo IIα) is the target of an important class of anticancer drugs, but tumor cells can become resistant by reducing the association of the enzyme with chromosomes. Here we describe a critical mechanism of chromatin recruitment and exchange that relies on a novel chromatin tether (ChT) domain and mediates interaction with histone H3 and DNA. We show that the ChT domain controls the residence time of Topo IIα on chromatin in mitosis and is necessary for the formation of mitotic chromosomes. Our data suggest that the dynamics of Topo IIα on chromosomes are important for successful mitosis and implicate histone tail posttranslational modifications in regulating Topo IIα.


Assuntos
Antígenos de Neoplasias/metabolismo , Cromatina/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mitose/genética , Animais , Antígenos de Neoplasias/genética , Linhagem Celular , Cromossomos/genética , DNA/metabolismo , DNA Topoisomerases Tipo II/genética , Proteínas de Ligação a DNA/genética , Células HeLa , Histonas/metabolismo , Humanos , Cervo Muntjac/genética , Membrana Nuclear/metabolismo , Ligação Proteica , Isoformas de Proteínas , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Interferência de RNA , RNA Interferente Pequeno , Proteínas Recombinantes de Fusão/genética
12.
Cell Cycle ; 9(9): 1759-63, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20404544

RESUMO

Cohesin proteins help maintain the physical associations between sister chromatids that arise in S-phase and are removed in anaphase. Recent studies found that cohesins also localize to the centrosomes, the organelles that organize the mitotic bipolar spindle. We find that the cohesin protein Rad21 localizes to centrosomes in a manner that is dependent upon known regulators of sister chromatid cohesion as well as regulators of centrosome function. These data suggest that Rad21 functions at the centrosome and that the regulators of Rad21 coordinate the centrosome and chromosomal functions of cohesin.


Assuntos
Centrossomo/metabolismo , Proteínas Nucleares/análise , Fosfoproteínas/análise , Anáfase , Aurora Quinases , Proteínas de Ciclo Celular/análise , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/análise , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Proteínas de Ligação a DNA , Endopeptidases/metabolismo , Células HeLa , Humanos , Mitose , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Separase , Coesinas , Quinase 1 Polo-Like
13.
Cell Cycle ; 9(9): 1764-73, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20436271

RESUMO

Multi-polar mitosis is strongly linked with aggressive cancers and it is a histological diagnostic of tumor-grade. However, factors that cause chromosomes to segregate to more than two spindle poles are not well understood. Here we show that cohesins Rad21, Smc1 and Smc3 are required for bipolar mitosis in human cells. After Rad21 depletion, chromosomes align at the metaphase plate and bipolar spindles assemble in most cases, but in anaphase the separated chromatids segregate to multiple poles. Time-lapse microscopy revealed that the spindle poles often become split in Rad21-depleted metaphase cells. Interestingly, exogenous expression of non-cleavable Rad21 results in multi-polar anaphase. Since cohesins are present at the spindle poles in mitosis, these data are consistent with a non-chromosomal function of cohesin.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Mitose , Anáfase , Centríolos/metabolismo , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Segregação de Cromossomos , Proteínas de Ligação a DNA , Células HeLa , Humanos , Metáfase , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Coesinas
14.
Cell Cycle ; 9(9): 1774-80, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20404533

RESUMO

Classically, chromosomal functions in DNA repair and sister chromatid association have been assigned to the cohesin proteins. More recent studies have provided evidence that cohesins also localize to the centrosomes, which organize the bipolar spindle during mitosis. Depletion of cohesin proteins is associated with multi-polar mitosis in which spindle pole integrity is compromised. However, the spindle pole defects after cohesin depletion could be an indirect consequence of a chromosomal cohesion defect which might impact centrosome integrity via alterations to the spindle microtubule network. Here we show that the cohesin Rad21 is required for centrosome integrity independently of its role as a chromosomal cohesin. Thus, Rad21 may promote accurate chromosome transmission not only by virtue of its function as a chromosomal cohesin, but also because it is required for centrosome function.


Assuntos
Centrossomo/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Proteínas de Ligação a DNA , Células HeLa , Humanos , Interfase , Mitose , Proteínas Nucleares/fisiologia , Fosfoproteínas/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Coesinas , Quinase 1 Polo-Like
15.
Methods Mol Biol ; 582: 189-207, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19763951

RESUMO

For analyzing chromosome structural defects that result from topoisomerase II (topo II) dysfunction, we have adapted classical cell cycle experiments, classical cytological techniques, and the use of a potent topo II inhibitor (ICRF-193). In this chapter, we describe in detail the protocols used and we discuss the rationale for our choice and for the adaptations applied. We clarify in which cell cycle stages each of the different chromosomal aberrations induced by inhibiting topo II take place: lack of chromosome segregation, undercondensation, lack of sister chromatid resolution, and lack of chromosome individualization. We also put these observations into the context of the two topo II-dependent cell cycle checkpoints.


Assuntos
Aberrações Cromossômicas , Cromossomos/ultraestrutura , DNA Topoisomerases Tipo II/metabolismo , Coloração pela Prata/métodos , Ciclo Celular/fisiologia , Aberrações Cromossômicas/induzido quimicamente , Aberrações Cromossômicas/efeitos dos fármacos , Cromossomos/efeitos dos fármacos , Cromossomos/metabolismo , DNA Topoisomerases Tipo II/genética , Dicetopiperazinas , Inibidores Enzimáticos/farmacologia , Células HeLa , Humanos , Piperazinas/farmacologia , Fuso Acromático/metabolismo , Inibidores da Topoisomerase II
16.
J Cell Sci ; 121(Pt 13): 2107-14, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18565823

RESUMO

Sister-chromatid cohesion is essential for accurate chromosome segregation. A key discovery towards our understanding of sister-chromatid cohesion was made 10 years ago with the identification of cohesins. Since then, cohesins have been shown to be involved in cohesion in numerous organisms, from yeast to mammals. Studies of the composition, regulation and structure of the cohesin complex led to a model in which cohesin loading during S-phase establishes cohesion, and cohesin cleavage at the onset of anaphase allows sister-chromatid separation. However, recent studies have revealed activities that provide cohesion in the absence of cohesin. Here we review these advances and propose an integrative model in which chromatid cohesion is a result of the combined activities of multiple cohesion mechanisms.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Cromossomos/metabolismo , Complexo de Reconhecimento de Origem/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Cromossomos/genética , Replicação do DNA , Humanos , Meiose/fisiologia , Prófase Meiótica I/fisiologia , Modelos Genéticos , Fase S/fisiologia , Saccharomyces cerevisiae , Troca de Cromátide Irmã , Coesinas
17.
Cell Cycle ; 6(6): 714-24, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17361102

RESUMO

Regulated separation of sister chromatids is the key event of mitosis. Sister chromatids remain cohered from the moment of DNA duplication until anaphase. Two known factors account for cohesion: DNA catenations and cohesin complexes. Premature loss of centromeric cohesion is prevented by the spindle checkpoint. Here we show that sororin, a protein implicated in promoting cohesion through effects on cohesin complexes, is involved in maintenance of cohesion in response to the spindle checkpoint. Sororin-depleted cells reach prometaphase with cohered sister chromatids and are able to form metaphase plates. However, loss of cohesion in anaphase is asynchronous and cells are unresponsive to the spindle checkpoint, accumulating with separated sisters scattered throughout the cytoplasm. These phenotypes are similar to those seen after Shugoshin depletion, suggesting that sororin and Shugoshin might act in concert. Furthermore, sororin-depleted and Shugoshin-depleted cells lose cohesion independently of the APC/C. Therefore, sororin and Shugoshin protect centromeric cohesion in response to the spindle checkpoint, but prevent the removal of cohesion by a mechanism independent of the APC/C.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Centrômero/metabolismo , Complexos Ubiquitina-Proteína Ligase/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Ciclossomo-Complexo Promotor de Anáfase , Centrômero/fisiologia , Cromátides/metabolismo , Células HeLa , Humanos , Fuso Acromático/fisiologia
18.
PLoS One ; 2(3): e318, 2007 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-17389909

RESUMO

BACKGROUND: Proper regulation of the cohesion at the centromeres of human chromosomes is essential for accurate genome transmission. Exactly how cohesion is maintained and is then dissolved in anaphase is not understood. PRINCIPAL FINDINGS: We have investigated the role of the cohesin complex at centromeres in human cells both by depleting cohesin subunits using RNA interference and also by expressing a non-cleavable version of the Rad21 cohesin protein. Rad21 depletion results in aberrant anaphase, during which the sister chromatids separate and segregate in an asynchronous fashion. However, centromere cohesion was maintained before anaphase in Rad21-depleted cells, and the primary constrictions at centromeres were indistinguishable from those in control cells. Expression of non-cleavable Rad21 (NC-Rad21), in which the sites normally cleaved by separase are mutated, resulted in delayed sister chromatid resolution in prophase and prometaphase, and a blockage of chromosome arm separation in anaphase, but did not impede centromere separation. CONCLUSIONS: These data indicate that cohesin complexes are dispensable for sister cohesion in early mitosis, yet play an important part in the fidelity of sister separation and segregation during anaphase. Cleavage at the separase-sensitive sites of Rad21 is important for arm separation, but not for centromere separation.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Centrômero/fisiologia , Proteínas Cromossômicas não Histona/fisiologia , Apoptose/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/deficiência , Proteínas Cromossômicas não Histona/genética , Células HeLa/efeitos dos fármacos , Células HeLa/fisiologia , Humanos , Cinética , Mitose/genética , Nocodazol/farmacologia , RNA Interferente Pequeno/genética , Rad51 Recombinase/metabolismo , Troca de Cromátide Irmã/efeitos dos fármacos , Troca de Cromátide Irmã/fisiologia , Transfecção , Coesinas
19.
Cell Cycle ; 5(17): 1925-8, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16940751

RESUMO

Checkpoint controls confer order to the cell cycle and help prevent genome instability. Here we discuss the Topoisomerase II (Decatenation) Checkpoint which functions to regulate mitotic progression so that chromosomes can be efficiently condensed in prophase and can be segregated with high fidelity in anaphase.


Assuntos
DNA Topoisomerases Tipo II/metabolismo , Mitose , Cromossomos Humanos/ultraestrutura , Dicetopiperazinas , Inibidores Enzimáticos/farmacologia , Deleção de Genes , Humanos , Proteínas de Neoplasias/genética , Piperazinas/farmacologia , Securina , Inibidores da Topoisomerase II
20.
PLoS One ; 1: e53, 2006 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-17183683

RESUMO

BACKGROUND: The precision of the metaphase-anaphase transition ensures stable genetic inheritance. The spindle checkpoint blocks anaphase onset until the last chromosome biorients at metaphase plate, then the bonds between sister chromatids are removed and disjoined chromatids segregate to the spindle poles. But, how sister separation is triggered is not fully understood. PRINCIPAL FINDINGS: We identify PIASgamma as a human E3 sumo ligase required for timely and efficient sister chromatid separation. In cells lacking PIASgamma, normal metaphase plates form, but the spindle checkpoint is activated, leading to a prolonged metaphase block. Sister chromatids remain cohered even if cohesin is removed by depletion of hSgo1, because DNA catenations persist at centromeres. PIASgamma-depleted cells cannot properly localize Topoisomerase II at centromeres or in the cores of mitotic chromosomes, providing a functional link between PIASgamma and Topoisomerase II. CONCLUSIONS: PIASgamma directs Topoisomerase II to specific chromosome regions that require efficient removal of DNA catenations prior to anaphase. The lack of this activity activates the spindle checkpoint, protecting cells from non-disjunction. Because DNA catenations persist without PIASgamma in the absence of cohesin, removal of catenations and cohesin rings must be regulated in parallel.


Assuntos
Segregação de Cromossomos/fisiologia , Proteínas Inibidoras de STAT Ativados/fisiologia , Anáfase , Aurora Quinases , Sequência de Bases , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centrômero/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , DNA/química , DNA/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Células HeLa , Humanos , Proteínas Mad2 , Metáfase , Modelos Biológicos , Proteínas de Ligação a Poli-ADP-Ribose , Proteínas Inibidoras de STAT Ativados/antagonistas & inibidores , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas Repressoras/metabolismo , Coesinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA