RESUMO
The development of green and sustainable materials for use as heterogeneous catalysts is a growing area of research in chemistry. In this paper, mesoporous SiO2-Al2O3 mixed oxide catalysts with different Si/Al ratios were prepared via hydrolytic (HSG) and nonhydrolytic sol-gel (NHSG) processes. The HSG route was explored in acidic and basic media, while NHSG was investigated in the presence of diisopropylether as an oxygen donor. The obtained materials were characterized using EDX, N2-physisorption, powder XRD, 29Si, 27Al MAS-NMR, and NH3-TPD. This approach offered good control of composition and the Si/Al ratio was found to influence both the texture and the acidity of the mesoporous materials. According to 27Al and 29Si MAS NMR analyses, silicon and aluminum were more regularly distributed in NHSG samples that were also more acidic. Silica-alumina catalysts prepared via NHSG were more active in esterification of acetic acid with n-BuOH.
Assuntos
Óxido de Alumínio , Dióxido de Silício , Óxido de Alumínio/química , Catálise , Esterificação , Géis/química , Óxidos , Dióxido de Silício/químicaRESUMO
The radical polymerization of styrene (St) initiated by a trifluoromethyl radical generated from a perfluorinated highly branched persistent radical (PPFR) is presented with an isolated yield above 70 %. The release of . CF3 radical occurred from a temperature above 85 °C. Deeper 1 H and 19 Fâ NMR spectroscopies of the resulting fluorinated polystyrenes (CF3 -PSts) evidenced the presence of both CF3 end-group of the PSt chain and the trifluoromethylation of the phenyl ring (in meta-position mainly). [PPFR]0 /[St]0 initial molar ratios of 3:1, 3:10 and 3:100 led to various molar masses ranging from 1750 to 5400â g mol-1 in 70-86 % yields. MALDI-TOF spectrometry of such CF3 -PSts highlighted polymeric distributions which evidenced differences between m/z fragments of 104 and 172 corresponding to styrene and trifluoromethyl styrene units, respectively. Such CF3 -PSt polymers were also compared to conventional PSts produced from the radical polymerization of St initiated by a peroxydicarbonate initiator. A mechanism of the polymerization is presented showing the formation of a trifluoromethyl styrene first, followed by its radical (co)polymerization with styrene. The thermal properties (thermal stability and glass transition temperature, Tg ) of these polymers were also compared and revealed a much better thermal stability of the CF3 -PSt (10 % weight loss at 356-376 °C) and a Tg of around 70 °C.
RESUMO
The extraction of condensed tannins from Aleppo pine bark and sumac roots (Brown Rhus tripartitum) was examined in near industrial conditions, using a water medium in the presence of 2% NaHCO3 and 0.5% NaHSO3 at two different temperatures (70 °C and at 100 °C). The tannins extracts were recovered in high yields (~25% of Aleppo pine and ~30% for sumac) with high phenolic contents (>75%). The tannins were characterized by 13C-NMR and MALDI TOF and showed characteristics of procyanidin/prodelphinidin units. The tannins extracted at 100 °C were composed of smaller flavonoid oligomers (DP < 8) compared to those extracted at a lower temperature (DP > 10). Adhesive resin formulations were prepared using Aleppo or sumac tannins and four different cross linkers (hexamine, glutaraldehyde, furfural, and glyoxal). The resins were studied by TMA in bending and tannins-based formaldehyde-free wood particleboards were produced. The panels displayed internal bond strengths > 0.35 MPa with the four hardeners and all of them passed relevant international standard specifications for interior grade panels. The best results were observed with the tannins extracted at 70 °C with furfural as hardener (IB = 0.81 MPa for Aleppo pine and IB = 0.76 MPa for sumac).
Assuntos
Adesivos/química , Pinus/química , Casca de Planta/química , Raízes de Plantas/química , Rhus/química , Taninos , Água/química , Taninos/química , Taninos/isolamento & purificação , Madeira/químicaRESUMO
Adsorption isotherms of pure vapors and vapor mixtures of water, methanol, and cyclohexane were studied using a synthesized 13X zeolite (FAU topology), by means of a DVS gravimetric vapor analyzer. These results were validated by GCMC calculations. The surface chemistry of the adsorbent was characterized by the thermodesorption of ammonia, and its textural properties were studied using nitrogen physisorption. The 13X zeolite was found to be strongly acidic (BrØnsted acid sites, Si/Al = 1.3) and its specific surface area around 1100 m2·g-1. Water was found to be able to diffuse within both the supercages and the sodalite cavities of the FAU structure, whereas methanol and cyclohexane were confined in the supercages only. The water/methanol sorption selectivity of the 13X zeolite was demonstrated by co-adsorption measurements. The composition of the water/methanol adsorbed phase could be calculated by assuming IAST hypotheses. This model failed in the case of the water/cyclohexane co-adsorption system, which is in line with the non-miscibility of the components in the adsorbed state. The sorption isotherms could be successfully simulated, confirming the robustness of the forcefields used. The 13X zeolite confirmed its a priori expected hydrophilic nature, which is useful for the selective adsorption of water in a methanol-water vapor mixture.
RESUMO
Li(Ni0.80Co0.15Al0.05)O2 is a lithium-ion battery cathode, commercially available for more than twenty years, which is associated with high energy capacity and high energy density, with moderate power. Atomic layer fluorination (ALF) of Li(Ni0.80Co0.15Al0.05)O2 with XeF2 is performed to improve its cyclability. The ALF method aims at forming an efficient protecting fluorinated layer at the surface of the material, with a low fluorine content. Surface fluorinated Li(Ni0.80Co0.15Al0.05)O2 is characterized by X-ray diffraction, electron microscopy, 19F nuclear magnetic resonance, X-ray photoelectron spectroscopy, and galvanostatic measurements, and a fluorine content as low as 1.4 wt% is found. The presence of fluorine atoms improves the electrochemical performances of Li(Ni0.80Co0.15Al0.05)O2: cyclability, polarization and rate capability are improved. Operando infrared spectroscopy and post-mortem gas chromatography provide some insights into the origins of these improvements.
RESUMO
Among the different strategies to design highly shape-selective ZSM-5 to obtain para-xylene through toluene alkylation with methanol, the introduction of mesopores to increase reactant and product diffusion has been proposed but barely studied. In this study, we prepared mesoporous ZSM-5 catalysts, named ZSM5-MT(x), from commercial ZSM-5 (Si/Al = 15), using a two-step micelle-templating procedure with octadecyltrimethylammonium bromide as a surfactant in basic medium (x = NaOH/Si). These materials were used as catalysts for the alkylation of toluene by methanol at a low contact time to avoid thermodynamic equilibrium of the xylene isomers. Compared to the parent ZSM-5, the mesoporous ZSM5-MT(x) catalysts did not improve the para-xylene selectivity, revealing that the strategy of increasing diffusion in the catalyst is not a good strategy to follow. However, ZSM5-MT(0.5) showed less deactivation on stream than the parent ZSM-5. Therefore, introducing mesopores to ZSM-5 could be interesting to explore, combined with another strategy of shape selectivity, such as the passivation of the external surface acidity.
RESUMO
The synthesis and characterization of a platform of novel functional fluorinated gradient copolymers soluble in liquid and supercritical CO2 is reported. These functional copolymers are bearing different types of complexing units (pyridine, triphenylphosphine, acetylacetate, thioacetate, and thiol) which are well-known ligands for various metals. They have been prepared by reversible addition-fragmentation chain-transfer (RAFT) polymerization in order to obtain well-defined gradient copolymers. The copolymers have been characterized by proton nuclear magnetic resonance (1H-NMR) spectroscopy, matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, thermal gravimetric analysis (TGA), dynamical scanning calorimetry (DSC) and cloud point measurements in dense CO2. All the investigated metal-complexing copolymers are soluble in dense CO2 under mild conditions (pressure lower than 30 MPa up to 65 °C), confirming their potential applications in processes such as metal-catalyzed reactions in dense CO2, metal impregnation, (e.g., preparation of supported catalysts) or metal extraction from various substrates (solid or liquid effluents). Particularly, it opens the door to greener and less energy-demanding processes for the recovery of metals from spent catalysts compared to more conventional pyro- and hydro-metallurgical methods.
RESUMO
We report herein a study on the alcohol-free, ring-opening polymerization of trimethylene carbonate (TMC) in THF, catalyzed by 1,5,7-triazabicyclo [4.4.0] ec-5-ene (TBD) with ratios nTBD/nTMC ranging between 1/20 and 1/400. In all cases, the reaction proceeds very rapidly, even faster than in the presence of alcohol initiators, and provides PTMC with molecular weights up to Mn = 34,000 g mol-1. Characterization of the obtained PTMC samples by MALDI-TOF mass spectrometry, triple detection size exclusion chromatography and 1H NMR spectroscopy reveals the presence of both linear and cyclic polymer chains.
RESUMO
Photoinitiated ring-opening polymerization of l-lactide (L-LA) using a photobase generator (PBG) able to release 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) is reported. Polymerization using the PBG with ketoprofenate counteranion (TBDH+.keto-) was studied in dichloromethane either in the presence or in the absence of 1-butanol as initiator. In both cases, full monomer conversion was reached at room temperature after 10 min of irradiation at 254 nm. In the presence of 1-butanol, linear poly(L-LA) chains (PLA) were obtained, as confirmed by 1H NMR and MALDI-TOF analyses. The polymerization was well controlled as attested by the production of polymers with low dispersity (D < 1.26) and by the linear evolution of molecular weights with the quantity of initiator. Without 1-butanol, although MALDI-TOF analyses revealed cyclic PLA chains (actually formed in situ during MALDI-TOF analysis), linear PLA chains were formed as proven by 1H NMR, viscosity measurement, and phosphitylation titration. This fast and "on demand" polymerization opens the way to biodegradable UV coatings.
RESUMO
Unprecedented synthesis of multiblock poly(vinylidene fluoride) (PVDF, up to 16 300 g mol-1) with narrow-dispersity blocks (D = 1.26) mediated by a fluorinated cyclic xanthate via reversible addition-fragmentation chain transfer (RAFT) polymerization is reported. The as-synthesized multiblock PVDF was employed as a macroRAFT agent to prepare valuable multiblock copolymers with potential applications in emerging areas.
RESUMO
Ethanol organosolv alfa grass lignins were extracted in the presence of sulfuric acid or Lewis acids (Sc(OTf)3, FeCl3) as catalysts and subjected to a comprehensive structural characterization by solid state 13C NMR, GPC, MALDI-TOF, and ASAP-MS/MS. The impact of the severity of the treatment and of the nature of the acid catalyst on the recovered lignin structure was investigated. The lignins isolated at high severity were highly recondensed and partly composed of regular structures composed of furan-like rings. The alfa (Stipa tenacissima L.) organosolv lignins were used for the preparation of formaldehyde-free adhesives which were characterized by TMA and used for the preparation of particleboard without any addition of synthetic resin. It has been demonstrated for the first time that: (1) the addition of 10% to 30% of organosolv alfa lignin in a tannin-based adhesive improved the adhesive performance; and (2) the conditions of the lignin extraction strongly impact the lignin-based adhesive performances. The highly recondensed lignin extracted with sulfuric acid as a catalyst allowed the production of resins with improved performances. Formulations composed of 50% glyoxalated alfa lignin and 50% of Aleppo Pine tannins yielded good internal bond strength results for the panels (IB = 0.45 MPa) and satisfied relevant international standard specifications for interior-grade panels.
RESUMO
Two new styryllactones, macrocalactone (1) and 3-deoxycardiobutanolide (2), were isolated from the fruits of Goniothalamus macrocalyx Ban (Annonaceae), together with seven known compounds including four acetogenins, annonacin (3), solamin (4), isoannonacin (5), trans-murisolinone (6), and three other compounds, 7-acetylaltholactone (7), beta-caryophyllene-8R,9R-oxide (8) and 2-(2'-hydroxytetracosanoylamino)-octadecane-1,3,4-triol (9). Their structures were determined by spectroscopic and MS analysis. The absolute configuration of 1 was determined by X-ray crystallographic analysis. The structures of the acetogenins were confirmed by liquid chromatography coupled to a hybrid quadrupole-time of flight mass spectrometer, using post-column lithium infusion. The results were compared with the fragmentation obtained with a hybrid linear trap-orbitrap mass spectrometer. Compound 7 had cytotoxicity against KB, HepG2, Lu, and MCF7 cell lines with IC50 values of 13.1, 23.7, 26.3 and 60.2 microM, respectively, whereas annonacin (3) was selectively active against KB cells (IC50 value of 6.5 microM). The discovery of 3-deoxycardiobutanolide (2) from the fruits of this plant revealed that G. macrocalyx could be a valuable natural resource to obtain this compound as it has been previously reported to have a significant cytotoxicity against different cancer cell lines, especially HL-60 cells.