Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(2): 1183-1193, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34972261

RESUMO

Worldwide efforts to switch away from coal have increased the reliance on natural gas imports for countries with inadequate domestic production. In preparing for potential gas import disruptions, there have been limited attempts to quantify the environmental and human health impacts of different options and incorporate them into decision-making. Here, we analyze the air pollution, human health, carbon emissions, and water consumption impacts under a set of planning strategies to prepare for potentially fully disrupted natural gas imports in China. We find that, with China's current natural gas storage capacity, compensating for natural gas import disruptions using domestic fossil fuels (with the current average combustion technology) could lead up to 23,300 (95% CI: 22,100-24,500) excess premature deaths from air pollution, along with increased carbon emissions and aggravated water stress. Improving energy efficiency, more progressive electrification and decarbonization, cleaner fossil combustion, and expanding natural gas storage capacity can significantly reduce the number of excess premature deaths and may offer opportunities to reduce negative carbon and water impacts simultaneously. Our results highlight the importance for China to increase the domestic storage capacity in the short term, and more importantly, to promote a clean energy transition to avoid potentially substantial environmental consequences under intensifying geopolitical uncertainties in China. Therefore, mitigating potential negative environmental impacts related to insecure natural gas supply provides additional incentives for China to facilitate a clean and efficient energy system transition.


Assuntos
Poluição do Ar , Gás Natural , Poluição do Ar/análise , Carbono/análise , China , Carvão Mineral , Humanos
2.
Environ Sci Technol ; 54(7): 3783-3792, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32146805

RESUMO

The U.S. Environmental Protection Agency is currently revising its regulations on trace element discharges from flue gas desulfurization (FGD) wastewater. In this work, we expand a predictive model of trace element behavior at coal-fired power plants (CFPPs) to estimate the trace element concentration of FGD wastewater at the plant level. We demonstrate that variation in trace element concentrations in FGD wastewater can span several orders of magnitude and is a function of both coal rank and installed air pollution control devices. This conclusion suggests that the benefits and costs of FGD wastewater treatment for the median plant will poorly describe the actual benefits and costs over the full range of existing CFPPs. Our model can be used to identify different "classes" of CFPPs for future regulatory and technology development efforts and to evaluate the robustness of proposed treatment technologies in light of large intraplant variability. The model can also elucidate new compliance pathways that exploit empirical and mechanistic relationships between coal concentration, trace element partitioning, and FGD wastewater composition.


Assuntos
Poluentes Atmosféricos , Oligoelementos , Carvão Mineral , Conservação dos Recursos Naturais , Centrais Elétricas , Águas Residuárias
3.
Proc Natl Acad Sci U S A ; 114(8): 1862-1867, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28167772

RESUMO

Coal-fired power plants (CFPPs) generate air, water, and solids emissions that impose substantial human health, environmental, and climate change (HEC) damages. This work demonstrates the importance of accounting for cross-media emissions tradeoffs, plant and regional emissions factors, and spatially variation in the marginal damages of air emissions when performing regulatory impact analyses for electric power generation. As a case study, we assess the benefits and costs of treating wet flue gas desulfurization (FGD) wastewater at US CFPPs using the two best available treatment technology options specified in the 2015 Effluent Limitation Guidelines (ELGs). We perform a life-cycle inventory of electricity and chemical inputs to FGD wastewater treatment processes and quantify the marginal HEC damages of associated air emissions. We combine these spatially resolved damage estimates with Environmental Protection Agency estimates of water quality benefits, fuel-switching benefits, and regulatory compliance costs. We estimate that the ELGs will impose average net costs of $3.01 per cubic meter for chemical precipitation and biological wastewater treatment and $11.26 per cubic meter for zero-liquid discharge wastewater treatment (expected cost-benefit ratios of 1.8 and 1.7, respectively), with damages concentrated in regions containing a high fraction of coal generation or a large chemical manufacturing industry. Findings of net cost for FGD wastewater treatment are robust to uncertainty in auxiliary power source, location of chemical manufacturing, and binding air emissions limits in noncompliant regions, among other variables. Future regulatory design will minimize compliance costs and HEC tradeoffs by regulating air, water, and solids emissions simultaneously and performing regulatory assessments that account for spatial variation in emissions impacts.

4.
Environ Sci Technol ; 53(10): 5585-5595, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31074623

RESUMO

Trace elements (TEs) exit coal-fired power plants (CFPPs) via solid, liquid, and gaseous waste streams. Estimating the TE concentrations of these waste streams is essential to selecting pollution controls and estimating emission reduction benefits. This work introduces a generalizable mass balance model for estimating TE mass flow rates in CFPP waste streams and evaluates model accuracy for the U.S. coal fleet given current data constraints. We stochastically estimate, using a bootstrapping approach, the 2015 plant-level mass flow rates of Hg, Se, As, and Cl to solid, liquid, and gas phase waste streams by combining publicly available data for combusted coal TE concentrations with estimates of TE partitioning within installed air pollution control processes. When compared with measured and reported data on TE mass flow rates, this model generally overestimates masses by 30-50%, with larger errors for Hg. The partitioning estimates are consistent for Se, As, and Cl removal from flue gas, but tend to underestimate Hg removal. While our model is suitable for first-order estimates of TE mass flows, future work to improve model performance should focus on collecting and using new data on TE concentrations in the coal blend, where data quality is the weakest.


Assuntos
Poluentes Atmosféricos , Oligoelementos , Carvão Mineral , Monitoramento Ambiental , Centrais Elétricas
5.
Environ Sci Technol ; 52(3): 1633-1643, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29090572

RESUMO

Conventional processes for municipal wastewater treatment facilities are energy and materially intensive. This work quantifies the air emission implications of energy consumption, chemical use, and direct pollutant release at municipal wastewater treatment facilities across the U.S. and assesses the potential to avoid these damages by generating electricity and heat from the combustion of biogas produced during anaerobic sludge digestion. We find that embedded and on-site air emissions from municipal wastewater treatment imposed human health, environmental, and climate (HEC) damages on the order of $1.63 billion USD in 2012, with 85% of these damages attributed to the estimated consumption of 19 500 GWh of electricity by treatment processes annually, or 0.53% of the US electricity demand. An additional 11.8 million tons of biogenic CO2 are directly emitted by wastewater treatment and sludge digestion processes currently installed at plants. Retrofitting existing wastewater treatment facilities with anaerobic sludge digestion for biogas production and biogas-fueled heat and electricity generation has the potential to reduce HEC damages by up to 24.9% relative to baseline emissions. Retrofitting only large plants (>5 MGD), where biogas generation is more likely to be economically viable, would generate HEC benefits of $254 annually. These findings reinforce the importance of accounting for use-phase embedded air emissions and spatially resolved marginal damage estimates when designing sustainable infrastructure systems.


Assuntos
Biocombustíveis , Águas Residuárias , Eletricidade , Esgotos , Eliminação de Resíduos Líquidos
6.
Environ Sci Technol ; 51(18): 10299-10306, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28835098

RESUMO

Water treatment processes present intersectoral and cross-media risk trade-offs that are not presently considered in Safe Drinking Water Act regulatory analyses. This paper develops a method for assessing the air emission implications of common municipal water treatment processes used to comply with recently promulgated and proposed regulatory standards, including concentration limits for, lead and copper, disinfection byproducts, chromium(VI), strontium, and PFOA/PFOS. Life-cycle models of electricity and chemical consumption for individual drinking water unit processes are used to estimate embedded NOx, SO2, PM2.5, and CO2 emissions on a cubic meter basis. We estimate air emission damages from currently installed treatment processes at U.S. drinking water facilities to be on the order of $500 million USD annually. Fully complying with six promulgated and proposed rules would increase baseline air emission damages by approximately 50%, with three-quarters of these damages originating from chemical manufacturing. Despite the magnitude of these air emission damages, the net benefit of currently implemented rules remains positive. For some proposed rules, however, the promise of net benefits remains contingent on technology choice.


Assuntos
Água Potável , Purificação da Água , Cromo , Desinfecção , Poluentes Químicos da Água
7.
Environ Sci Technol ; 49(14): 8297-306, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26061407

RESUMO

Secondary application of unconverted heat produced during electric power generation has the potential to improve the life-cycle fuel efficiency of the electric power industry and the sectors it serves. This work quantifies the residual heat (also known as waste heat) generated by U.S. thermal power plants and assesses the intermittency and transport issues that must be considered when planning to utilize this heat. Combining Energy Information Administration plant-level data with literature-reported process efficiency data, we develop estimates of the unconverted heat flux from individual U.S. thermal power plants in 2012. Together these power plants discharged an estimated 18.9 billion GJ(th) of residual heat in 2012, 4% of which was discharged at temperatures greater than 90 °C. We also characterize the temperature, spatial distribution, and temporal availability of this residual heat at the plant level and model the implications for the technical and economic feasibility of its end use. Increased implementation of flue gas desulfurization technologies at coal-fired facilities and the higher quality heat generated in the exhaust of natural gas fuel cycles are expected to increase the availability of residual heat generated by 10.6% in 2040.


Assuntos
Temperatura Alta , Centrais Elétricas , Conservação dos Recursos Naturais , Eletricidade , Centrais Elétricas/economia , Fatores de Tempo , Estados Unidos
8.
Eco Environ Health ; 1(4): 219-228, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38077260

RESUMO

Research about farmland pollution by heavy metals/metalloids in China has drawn growing attention. However, there was rare information on spatiotemporal evolution and pollution levels of heavy metals in the major grain-producing areas. We extracted and examined data from 276 publications between 2010 and 2021 covering five major grain-producing regions in China from 2010 to 2021. Spatiotemporal evolution characteristics of main heavy metals/metalloids was obtained by meta-analysis. In addition, subgroup analyses were carried out to study preliminary correlations related to accumulation of the pollutants. Cadmium (Cd) was found to be the most prevailing pollutant in the regions in terms of both spatial distribution and temporal accumulation. The Huang-Huai-Hai Plain was the most severely polluted. Accumulation of Cd, mercury (Hg) and copper (Cu) increased from 2010 to 2015 when compared with the 1990 background data. Further, the levels of five key heavy metals (Cd, Cu, Hg, lead [Pb] and zinc [Zn]) showed increasing trends from 2016 to 2021 in all five regions. Soil pH and mean annual precipitation had variable influences on heavy metal accumulation. Alkaline soil and areas with less rainfall faced higher pollution levels. Farmlands cropped with mixed species showed smaller effect sizes of heavy metals than those with single upland crop, suggesting that mixed farmland use patterns could alleviate the levels of heavy metals in soil. Of various soil remediation efforts, farmland projects only held a small market share. The findings are important to support the research of risk assessment, regulatory development, pollution prevention, fund allocation and remediation actions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA