Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 24(Pt 6): 1152-1162, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29091058

RESUMO

Geometry correction is traditionally plagued by mis-fitting of correlated parameters, leading to local minima which prevent further improvements. Segmented detectors pose an enhanced risk of mis-fitting: even a minor confusion of detector distance and panel separation can prevent improvement in data quality. The slip-and-slide algorithm breaks down effects of the correlated parameters and their associated target functions in a fundamental shift in the approach to the problem. Parameters are never refined against the components of the data to which they are insensitive, providing a dramatic boost in the exploitation of information from a very small number of diffraction patterns. This algorithm can be applied to exploit the adherence of the spot-finding results prior to indexing to a given lattice using unit-cell dimensions as a restraint. Alternatively, it can be applied to the predicted spot locations and the observed reflection positions after indexing from a smaller number of images. Thus, the indexing rate can be boosted by 5.8% using geometry refinement from only 125 indexed patterns or 500 unindexed patterns. In one example of cypovirus type 17 polyhedrin diffraction at the Linac Coherent Light Source, this geometry refinement reveals a detector tilt of 0.3° (resulting in a maximal Z-axis error of ∼0.5 mm from an average detector distance of ∼90 mm) whilst treating all panels independently. Re-indexing and integrating with updated detector geometry reduces systematic errors providing a boost in anomalous signal of sulfur atoms by 20%. Due to the refinement of decoupled parameters, this geometry method also reaches convergence.

2.
J Synchrotron Radiat ; 24(Pt 1): 63-72, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28009547

RESUMO

Biological small-angle X-ray scattering (SAXS) is an increasingly popular technique used to obtain nanoscale structural information on macromolecules in solution. However, radiation damage to the samples limits the amount of useful data that can be collected from a single sample. In contrast to the extensive analytical resources available for macromolecular crystallography (MX), there are relatively few tools to quantitate radiation damage for SAXS, some of which require a significant level of manual characterization, with the potential of leading to conflicting results from different studies. Here, computational tools have been developed to automate and standardize radiation damage analysis for SAXS data. RADDOSE-3D, a dose calculation software utility originally written for MX experiments, has been extended to account for the cylindrical geometry of the capillary tube, the liquid composition of the sample and the attenuation of the beam by the capillary material to allow doses to be calculated for many SAXS experiments. Furthermore, a library has been written to visualize and explore the pairwise similarity of frames. The calculated dose for the frame at which three subsequent frames are determined to be dissimilar is defined as the radiation damage onset threshold (RDOT). Analysis of RDOTs has been used to compare the efficacy of radioprotectant compounds to extend the useful lifetime of SAXS samples. Comparison of the RDOTs shows that, for radioprotectant compounds at 5 and 10 mM concentration, glycerol is the most effective compound. However, at 1 and 2 mM concentrations, dithiothreitol (DTT) appears to be most effective. Our newly developed visualization library contains methods that highlight the unusual radiation damage results given by SAXS data collected using higher concentrations of DTT: these observations should pave the way to the development of more sophisticated frame merging strategies.


Assuntos
Substâncias Macromoleculares/química , Espalhamento a Baixo Ângulo , Humanos , Proteínas , Software , Difração de Raios X
3.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 6): 1400-10, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26057680

RESUMO

Research towards using X-ray free-electron laser (XFEL) data to solve structures using experimental phasing methods such as sulfur single-wavelength anomalous dispersion (SAD) has been hampered by shortcomings in the diffraction models for X-ray diffraction from FELs. Owing to errors in the orientation matrix and overly simple partiality models, researchers have required large numbers of images to converge to reliable estimates for the structure-factor amplitudes, which may not be feasible for all biological systems. Here, data for cytoplasmic polyhedrosis virus type 17 (CPV17) collected at 1.3 Å wavelength at the Linac Coherent Light Source (LCLS) are revisited. A previously published definition of a partiality model for reflections illuminated by self-amplified spontaneous emission (SASE) pulses is built upon, which defines a fraction between 0 and 1 based on the intersection of a reflection with a spread of Ewald spheres modelled by a super-Gaussian wavelength distribution in the X-ray beam. A method of post-refinement to refine the parameters of this model is suggested. This has generated a merged data set with an overall discrepancy (by calculating the R(split) value) of 3.15% to 1.46 Å resolution from a 7225-image data set. The atomic numbers of C, N and O atoms in the structure are distinguishable in the electron-density map. There are 13 S atoms within the 237 residues of CPV17, excluding the initial disordered methionine. These only possess 0.42 anomalous scattering electrons each at 1.3 Å wavelength, but the 12 that have single predominant positions are easily detectable in the anomalous difference Fourier map. It is hoped that these improvements will lead towards XFEL experimental phase determination and structure determination by sulfur SAD and will generally increase the utility of the method for difficult cases.


Assuntos
Algoritmos , Modelos Moleculares , Lasers
4.
J Synchrotron Radiat ; 22(2): 213-24, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25723923

RESUMO

Significant progress has been made in macromolecular crystallography over recent years in both the understanding and mitigation of X-ray induced radiation damage when collecting diffraction data from crystalline proteins. In contrast, despite the large field that is productively engaged in the study of radiation chemistry of nucleic acids, particularly of DNA, there are currently very few X-ray crystallographic studies on radiation damage mechanisms in nucleic acids. Quantitative comparison of damage to protein and DNA crystals separately is challenging, but many of the issues are circumvented by studying pre-formed biological nucleoprotein complexes where direct comparison of each component can be made under the same controlled conditions. Here a model protein-DNA complex C.Esp1396I is employed to investigate specific damage mechanisms for protein and DNA in a biologically relevant complex over a large dose range (2.07-44.63 MGy). In order to allow a quantitative analysis of radiation damage sites from a complex series of macromolecular diffraction data, a computational method has been developed that is generally applicable to the field. Typical specific damage was observed for both the protein on particular amino acids and for the DNA on, for example, the cleavage of base-sugar N1-C and sugar-phosphate C-O bonds. Strikingly the DNA component was determined to be far more resistant to specific damage than the protein for the investigated dose range. At low doses the protein was observed to be susceptible to radiation damage while the DNA was far more resistant, damage only being observed at significantly higher doses.


Assuntos
Dano ao DNA/efeitos da radiação , Nucleoproteínas/efeitos da radiação , Lesões por Radiação , Cristalografia por Raios X/métodos , Relação Dose-Resposta à Radiação , Humanos , Modelos Moleculares , Conformação Proteica/efeitos da radiação
5.
Protein Sci ; 32(4): e4608, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36840926

RESUMO

Present understanding of protein structure dynamics trails behind that of static structures. A torsion-angle-based approach, called the representation of protein entities, derives an interpretable conformational space that correlates with data collection temperature, resolution, and reaction coordinate. For more complex systems, atomic coordinates fail to separate functional conformational states, which are still preserved by torsion angle-derived space. This indicates that torsion angles are often a more sensitive and biologically relevant descriptor for protein conformational dynamics than atomic coordinates.


Assuntos
Proteínas , Proteínas/química , Conformação Proteica
6.
Nat Commun ; 11(1): 4511, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908128

RESUMO

Serial femtosecond crystallography (SFX) with X-ray free electron lasers (XFELs) allows structure determination of membrane proteins and time-resolved crystallography. Common liquid sample delivery continuously jets the protein crystal suspension into the path of the XFEL, wasting a vast amount of sample due to the pulsed nature of all current XFEL sources. The European XFEL (EuXFEL) delivers femtosecond (fs) X-ray pulses in trains spaced 100 ms apart whereas pulses within trains are currently separated by 889 ns. Therefore, continuous sample delivery via fast jets wastes >99% of sample. Here, we introduce a microfluidic device delivering crystal laden droplets segmented with an immiscible oil reducing sample waste and demonstrate droplet injection at the EuXFEL compatible with high pressure liquid delivery of an SFX experiment. While achieving ~60% reduction in sample waste, we determine the structure of the enzyme 3-deoxy-D-manno-octulosonate-8-phosphate synthase from microcrystals delivered in droplets revealing distinct structural features not previously reported.


Assuntos
Cristalografia/instrumentação , Elétrons , Dispositivos Lab-On-A-Chip , Lasers , Aldeído Liases/ultraestrutura , Proteínas de Escherichia coli/ultraestrutura , Hidrodinâmica
7.
Nat Commun ; 9(1): 4025, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30279492

RESUMO

The new European X-ray Free-Electron Laser is the first X-ray free-electron laser capable of delivering X-ray pulses with a megahertz inter-pulse spacing, more than four orders of magnitude higher than previously possible. However, to date, it has been unclear whether it would indeed be possible to measure high-quality diffraction data at megahertz pulse repetition rates. Here, we show that high-quality structures can indeed be obtained using currently available operating conditions at the European XFEL. We present two complete data sets, one from the well-known model system lysozyme and the other from a so far unknown complex of a ß-lactamase from K. pneumoniae involved in antibiotic resistance. This result opens up megahertz serial femtosecond crystallography (SFX) as a tool for reliable structure determination, substrate screening and the efficient measurement of the evolution and dynamics of molecular structures using megahertz repetition rate pulses available at this new class of X-ray laser source.

8.
Acta Crystallogr D Struct Biol ; 72(Pt 6): 817-22, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27303802

RESUMO

Perfect merohedral twinning of crystals is not uncommon and complicates structural analysis. An iterative method for the deconvolution of data from perfectly merohedrally twinned crystals in the presence of noncrystallographic symmetry (NCS) has been reimplemented. It is shown that the method recovers the data effectively using test data, and an independent metric of success, based on special classes of reflections that are unaffected by the twin operator, is now provided. The method was applied to a real problem with fivefold NCS and rather poor-quality diffraction data, and it was found that even in these circumstances the method appears to recover most of the information. The software has been made available in a form that can be applied to other crystal systems.


Assuntos
Cristalografia/métodos , Vírus da Febre Aftosa/química , Animais , Cristalização/métodos , Febre Aftosa/virologia , Modelos Moleculares , Software
9.
J Appl Crystallogr ; 49(Pt 3): 1065-1072, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27275149

RESUMO

As serial femtosecond crystallography expands towards a variety of delivery methods, including chip-based methods, and smaller collected data sets, the requirement to optimize the data analysis to produce maximum structure quality is becoming increasingly pressing. Here cppxfel, a software package primarily written in C++, which showcases several data analysis techniques, is released. This software package presently indexes images using DIALS (diffraction integration for advanced light sources) and performs an initial orientation matrix refinement, followed by post-refinement of individual images against a reference data set. Cppxfel is released with the hope that the unique and useful elements of this package can be repurposed for existing software packages. However, as released, it produces high-quality crystal structures and is therefore likely to be also useful to experienced users of X-ray free-electron laser (XFEL) software who wish to maximize the information extracted from a limited number of XFEL images.

10.
Acta Crystallogr D Struct Biol ; 72(Pt 8): 956-65, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27487826

RESUMO

The indexing methods currently used for serial femtosecond crystallography were originally developed for experiments in which crystals are rotated in the X-ray beam, providing significant three-dimensional information. On the other hand, shots from both X-ray free-electron lasers and serial synchrotron crystallography experiments are still images, in which the few three-dimensional data available arise only from the curvature of the Ewald sphere. Traditional synchrotron crystallography methods are thus less well suited to still image data processing. Here, a new indexing method is presented with the aim of maximizing information use from a still image given the known unit-cell dimensions and space group. Efficacy for cubic, hexagonal and orthorhombic space groups is shown, and for those showing some evidence of diffraction the indexing rate ranged from 90% (hexagonal space group) to 151% (cubic space group). Here, the indexing rate refers to the number of lattices indexed per image.


Assuntos
Algoritmos , Cristalografia/métodos , Proteínas/química , Cristalografia por Raios X/métodos , Elétrons , Lasers , Conformação Proteica , Síncrotrons , Fatores de Tempo , Raios X
11.
J Appl Crystallogr ; 47(Pt 5): 1781-1783, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25294981

RESUMO

The macromolecular crystallography (MX) user experience at synchrotron radiation facilities continues to evolve, with the impact of developments in X-ray detectors, computer hardware and automation methods making it possible for complete data sets to be collected on timescales of tens of seconds. Data can be reduced in a couple of minutes and in favourable cases structures solved and refined shortly after. The information-rich database ISPyB, automatically populated by data acquisition software, data processing and structure solution pipelines at the Diamond Light Source beamlines, allows users to automatically track MX experiments in real time. In order to improve the synchrotron users' experience, efficient access to the data contained in ISPyB is now provided via an iOS 6.0+ app for iPhones and iPads. This provides users, both local and remote, with a succinct summary of data collection, visualization of diffraction images and crystals, and key metrics for data quality in real time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA