Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 13(9)2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39335049

RESUMO

Acinetobacter baumannii emerged as one of the most important pathogens for the development of new antimicrobials due to the worldwide detection of isolates resistant to all commercial antibiotics, especially in nosocomial infections. Biofilm formation enhances A. baumannii survival by impairing antimicrobial action, being an important target for new antimicrobials. Fluopsin C (FlpC) is an organocupric secondary metabolite with broad-spectrum antimicrobial activity. This study aimed to evaluate the antibiofilm activity of FlpC in established biofilms of extensively drug-resistant A. baumannii (XDRAb) and the effects of its combination with polymyxin B (PolB) on planktonic cells. XDRAb susceptibility profiles were determined by Vitek 2 Compact, disk diffusion, and broth microdilution. FlpC and PolB interaction was assessed using the microdilution checkerboard method and time-kill kinetics. Biofilms of XDRAb characterization and removal by FlpC exposure were assessed by biomass staining with crystal violet. Confocal Laser Scanning Microscopy was used to determine the temporal removal of the biofilms using DAPI, and cell viability using live/dead staining. The minimum inhibitory concentration (MIC) of FlpC on XDRAb was 3.5 µg mL-1. Combining FlpC + PolB culminated in an additive effect, increasing bacterial susceptibility to both antibiotics. FlpC-treated 24 h biofilms reached a major biomass removal of 92.40 ± 3.38% (isolate 230) using 7.0 µg mL-1 FlpC. Biomass removal occurred significantly over time through the dispersion of the extracellular matrix and decreasing cell number and viability. This is the first report of FlpC's activity on XDRAb and the compound showed a promissory response on planktonic and sessile cells, making it a candidate for the development of a new antimicrobial product.

2.
Front Plant Sci ; 12: 628769, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276714

RESUMO

The Tectona grandis L.f. (teak) is an important forest species with high economy value in Asia, Africa, and Latin America. In Latin America, Brazil is one of the countries with the most cultivated areas. The cultivation of teak turns out to be challenging because of its high nutritional demand and the need for seedling production by clonal propagation that includes about 90 days in the nursery phase. The optimization of seedling production is necessary for better results in the nursery and to enhance growth in the field. In this way, the well-known advantage of using microorganisms that promote plant development appears as a potential biotechnological approach to be explored and for the implantation of new areas of wood production. In this study, the inoculation of Bacillus subtilis as plant growth-promoting rhizobacteria (PGPR) was evaluated, and Rhizophagus clarus, an arbuscular mycorrhizal fungus (AMF), and the co-inoculation of these microorganisms in the teak seedling production phase can improve the development of commercial plantations under field conditions. Experiments were carried out under greenhouse and field conditions to evaluate four treatments based on the substrate inoculation of the seedlings. Treatments consisted of a non-inoculated control, PGPR inoculation, AMF inoculation, and PGPR + AMF inoculation. The results of the biometric evaluation of seedlings in the greenhouse showed that there was a significant difference in AMF inoculation and PGPR + AMF inoculation in terms of the specific root length and root density treatments, there was also a positive correlation between these two treatments and the absorption of some nutrients, such as P, N, K, Mg, Cu, Mn, and Zn. This response led to an increase between 4.75 and 11.04% in the field growth rate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA