Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(26): e2310209, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38634392

RESUMO

In this work, the experimental evidence of glass-like phonon dynamics and thermal conductivity in a nanocomposite made of GeTe and amorphous carbon is reported, which is of interest for microelectronics, and specifically phase change memories. It is shown that, the total thermal conductivity is reduced by a factor of three at room temperature with respect to pure GeTe, due to the reduction of both electronic and phononic contributions. This latter, similarly to glasses, is small and weakly increasing with temperature between 100 and 300 K, indicating a mostly diffusive thermal transport and reaching a value of 0.86(7) Wm-1K-1 at room temperature. A thorough investigation of the nanocomposite's phonon dynamics reveals the appearance of an excess intensity in the low energy vibrational density of states, reminiscent of the Boson peak in glasses. These features can be understood in terms of an enhanced phonon scattering at the interfaces, due to the presence of elastic heterogeneities, at wavelengths in the 2-20 nm range. The findings confirm recent simulation results on crystalline/amorphous nanocomposites and open new perspectives in phonon and thermal engineering through the direct manipulation of elastic heterogeneities.

2.
J Chem Phys ; 153(11): 114503, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32962385

RESUMO

The sound velocity and refractive index of pure N2 and of the equimolar N2-CO2 mixture are measured up to 15 GPa and 700 K in a resistive heating diamond anvil cell. The refractive index vs pressure is obtained by an interferometric method. The adiabatic sound velocity is then determined from the measurement of the Brillouin frequency shift in the backscattering geometry and the refractive index data. No phase separation of the N2-CO2 fluid mixture is observed. The fluid mixture properties are discussed in terms of ideal mixing.

3.
Phys Rev Lett ; 112(12): 125502, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24724658

RESUMO

We report the observation, by means of high-resolution inelastic x-ray scattering, of an unusually large temperature dependence of the sound attenuation of a network glass at terahertz frequency, an unprecedentedly observed phenomenon. The anharmonicity can be ascribed to the interaction between the propagating acoustic wave and the bath of thermal vibrations. At low temperatures the sound attenuation follows a Rayleigh-Gans scattering law. As the temperature is increased the anharmonic process sets in, resulting in an almost quadratic frequency dependence of the damping in the entire frequency range. We show that the temperature variation of the sound damping accounts quantitatively for the temperature dependence of the density of vibrational states.

4.
Phys Rev Lett ; 113(2): 025506, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-25062208

RESUMO

Perfectly crystalline solids are excellent heat conductors. Prominent counterexamples are intermetallic clathrates, guest-host systems with a high potential for thermoelectric applications due to their ultralow thermal conductivities. Our combined experimental and theoretical investigation of the lattice dynamics of a particularly simple binary representative, Ba(8)Si(46), identifies the mechanism responsible for the reduction of lattice thermal conductivity intrinsic to the perfect crystal structure. Above a critical wave vector, the purely harmonic guest-host interaction leads to a drastic transfer of spectral weight to the guest atoms, corresponding to a localization of the propagative phonons.

5.
Phys Rev Lett ; 109(16): 165701, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-23215091

RESUMO

We use x-ray photon correlation spectroscopy to investigate the structural relaxation process in a metallic glass on the atomic length scale. We report evidence for a dynamical crossover between the supercooled liquid phase and the metastable glassy state, suggesting different origins of the relaxation process across the transition. Furthermore, using different cooling rates, we observe a complex hierarchy of dynamic processes characterized by distinct aging regimes. Strong analogies with the aging dynamics of soft glassy materials, such as gels and concentrated colloidal suspensions, point at stress relaxation as a universal mechanism driving the relaxation dynamics of out-of-equilibrium systems.

6.
J Chem Phys ; 137(21): 214502, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23231246

RESUMO

We report a detailed analysis of the dynamic structure factor of glassy sorbitol by using inelastic X-ray scattering and previously measured light scattering data [B. Ruta, G. Monaco, F. Scarponi, and D. Fioretto, Philos. Mag. 88, 3939 (2008)]. The thus obtained knowledge on the density-density fluctuations at both the mesoscopic and macroscopic length scale has been used to address two debated topics concerning the vibrational properties of glasses. The relation between the acoustic modes and the universal boson peak (BP) appearing in the vibrational density of states of glasses has been investigated, also in relation with some recent theoretical models. Moreover, the connection between the elastic properties of glasses and the slowing down of the structural relaxation process in supercooled liquids has been scrutinized. For what concerns the first issue, it is here shown that the wave vector dependence of the acoustic excitations can be used, in sorbitol, to quantitatively reproduce the shape of the boson peak, supporting the relation between BP and acoustic modes. For what concerns the second issue, a proper study of elasticity over a wide spatial range is shown to be fundamental in order to investigate the relation between elastic properties and the slowing down of the dynamics in the corresponding supercooled liquid phase.

7.
Phys Rev Lett ; 104(19): 195501, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20866974

RESUMO

The propagation and damping of the acoustic excitations in vitreous silica is measured at terahertz frequencies using inelastic x-ray scattering. The apparent sound velocity shows a marked dispersion with frequency while the sound attenuation undergoes a crossover from a fourth to a second power law frequency dependence. This finding solves a recent controversy concerning the location of this crossover in vitreous silica, clarifying that it occurs at the position of the glass-characteristic excess of vibrational modes known as boson peak, and thus establishing a direct connection between boson peak and acoustic dispersion curves.

8.
J Chem Phys ; 133(4): 041101, 2010 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-20687625

RESUMO

The results of a combined experimental study of the high-frequency acoustic dynamics and of the vibrational density of states (VDOS) as a function of temperature in a glass of sorbitol are reported here. The excess in the VDOS at approximately 4.5 meV over the Debye, elastic continuum prediction (boson peak) is found to be clearly related to anomalies observed in the acoustic dispersion curve in the mesoscopic wavenumber range of few nm(-1). The quasiharmonic temperature dependence of the acoustic dispersion curves offers a natural explanation for the observed scaling of the boson peak with the elastic medium properties.

9.
Phys Rev E ; 102(3-1): 033003, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33075991

RESUMO

Nowadays metamaterials are at the focus of an intense research as promising for thermal and acoustic engineering. However, the computational cost associated to the large system size required for correctly simulating them imposes the use of finite-elements simulations, developing continuum models, able to grasp the physics at play without entering in the atomistic details. Still, a correct description should be able to reproduce not only the extrinsic scattering sources on waves propagation, as introduced by the metamaterial microstructure, but also the intrinsic wave attenuation of the material itself. This becomes dramatically important when the metamaterial is made out of a glass, which is intrinsically highly dissipative and with a wave attenuation strongly dependent on frequency. Here we propose a continuum mechanical model for a viscoelastic medium, able to bridge atomic and macroscopic scale in amorphous materials and describe phonon attenuation due to atomistic mechanisms, characterized by a defined frequency dependence. This represents a first decisive step for investigating the effect of a complex nano- or microstructure on acoustic attenuation, while including the atomistic contribution as well.

10.
Nanoscale ; 11(44): 21502-21512, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31686081

RESUMO

Nanocomposites made of crystalline nanoinclusions embedded in an amorphous matrix are at the forefront of current research for energy harvesting applications. However, the microscopic mechanisms leading alternatively to an effectively reduced or enhanced thermal transport still escape understanding. In this work, we present a molecular dynamics simulation study of model systems, where for the first time we combine a microscopic investigation of phonon dynamics with the macroscopic thermal conductivity calculation, to shed light on thermal transport in these materials. We clearly show that crystalline nanoinclusions represent a novel scattering source for vibrational waves, modifying the nature of low energy vibrations and significantly anticipating the propagative-to-diffusive crossover (Ioffe-Regel), usually located at energies of few THz in amorphous materials. Moreover, this crossover position can be tuned by changing the elastic contrast between nanoinclusions and the matrix, and anticipated by a factor as large as 10 for a harder inclusion. While the propagative contribution to thermal transport is drastically reduced, the calculated thermal conductivity is not significantly affected in the chosen system, as the diffusive contribution dominates heat transport when all phonons are thermally populated. These findings allow finally to understand the panoply of contradictory results reported on thermal transport in nanocomposites and give clear indications to the characteristics that the parent phases should have for efficiently reducing heat transport in a nanocomposite.

11.
Phys Rev E ; 98(2-1): 023005, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30253567

RESUMO

In amorphous solids, a non-negligible part of thermal conductivity results from phonon scattering on the structural disorder. The conversion of acoustic energy into thermal energy is often measured by the dynamical dtructure factor (DSF) thanks to inelastic neutron or x-ray scattering. The DSF is used to quantify the dispersion relation of phonons, together with their damping. However, the connection of the dynamical structure factor with dynamical attenuation of wave packets in glasses is still a matter of debate. We focus here on the analysis of wave-packet propagation in numerical models of amorphous silicon. We show that the damped harmonic oscillator model fits of the dynamical structure factors give a good estimate of the wave packets mean free path, only below the Ioffe-Regel frequency. Above the Ioffe-Regel frequency and below the mobility edge, a pure diffusive regime without a definite mean free path is observed. The high-frequency mobility edge is characteristic of a transition to localized vibrations. Below the Ioffe-Regel frequency, a mixed regime is evidenced at intermediate frequencies, with a coexistence of propagative and diffusive wave fronts. The transition between these different regimes is analyzed in detail and reveals a complex dynamics for energy transport, thus raising the question of the correct modeling of thermal transport in amorphous materials.

12.
Nat Commun ; 7: 10344, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26787443

RESUMO

Understanding and controlling physical aging, that is, the spontaneous temporal evolution of out-of-equilibrium systems, represents one of the greatest tasks in material science. Recent studies have revealed the existence of a complex atomic motion in metallic glasses, with different aging regimes in contrast with the typical continuous aging observed in macroscopic quantities. By combining dynamical and structural synchrotron techniques, here for the first time we directly connect previously identified microscopic structural mechanisms with the peculiar atomic motion, providing a broader unique view of their complexity. We show that the atomic scale is dominated by the interplay between two processes: rearrangements releasing residual stresses related to a cascade mechanism of relaxation, and medium range ordering processes, which do not affect the local density, likely due to localized relaxations of liquid-like regions. As temperature increases, a surprising additional secondary relaxation process sets in, together with a faster medium range ordering, likely precursors of crystallization.

13.
J Phys Chem B ; 115(48): 14052-63, 2011 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-22007995

RESUMO

We present a detailed investigation of the vibrational dynamics of glassy sulfur (g-S). The large frequency range spanned in this study has allowed us to carefully scrutinize the elastic properties of g-S and to analyze their relation to various features of both the glassy and the liquid state. In particular, the acoustic properties of g-S present a quasi-harmonic behavior in the THz frequency range, while at lower frequency, in the GHz range, they are affected by a strong anharmonic contribution. Moreover, the high frequency (THz) dynamics of g-S does not present signatures of the elastic anomalies recently observed in a number of glasses. Despite this apparent contradiction, we show that this finding is not in disagreement with the previous ones. Finally, by considering the correct long wavelength limit of the density fluctuations in the glassy state, we estimate the continuum limit of the nonergodicity factor and we investigate recently proposed relations between the fast dynamics of glasses and the slow dynamics of the corresponding viscous melts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA