Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(18): e2117464119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35476522

RESUMO

As northern latitudes experience rapid winter warming, there is an urgent need to assess the effect of varying winter conditions on tree growth and forest carbon sequestration potential. We examined tree growth responses to variability in cold-season (November­April) frequency of freeze days (FFD) over 1951 to 2018 using tree-ring data from 35,217 trees and 57 species at 4,375 sites distributed across Canada. We found that annual radial growth responses to FFD varied by species, with some commonalities across genera and clades. The growth of gymnosperms with late spring leaf-out strategies was negatively related to FFD; years with high FFD were most detrimental to the annual growth of Pinus banksiana, Pinus contorta, Larix lyalli, Abies amabilis, and Abies lasiocarpa. In contrast, the growth of angiosperms with early leaf-out strategies, namely, Populus tremuloides and Betula papyrifera, was better in the coldest years, and gymnosperms with intermediate leaf-out timing, such as widespread Picea mariana and Picea glauca, had no consistent relationship to FFD. Tree growth responses to FFD were further modulated by tree size, tree age, regional climate (i.e., mean cold-season temperature), and local site conditions. Overall, our results suggest that moderately warming winters may temporarily improve the growth of widespread pines and some high-elevation conifers in western Canada, whereas warming winters may be detrimental to the growth of widespread boreal angiosperms. Our findings also highlight the value of using species-specific climate-growth relationships to refine predictions of forest carbon dynamics.


Assuntos
Florestas , Árvores , Sequestro de Carbono , Mudança Climática , Estações do Ano
2.
Glob Chang Biol ; 30(6): e17347, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38822663

RESUMO

Climate change (CC) necessitates reforestation/afforestation programs to mitigate its impacts and maximize carbon sequestration. But comprehending how tree growth, a proxy for fitness and resilience, responds to CC is critical to maximize these programs' effectiveness. Variability in tree response to CC across populations can notably be influenced by the standing genetic variation encompassing both neutral and adaptive genetic diversity. Here, a framework is proposed to assess tree growth potential at the population scale while accounting for standing genetic variation. We applied this framework to black spruce (BS, Picea mariana [Mill] B.S.P.), with the objectives to (1) determine the key climate variables having impacted BS growth response from 1974 to 2019, (2) examine the relative roles of local adaptation and the phylogeographic structure in this response, and (3) project BS growth under two Shared Socioeconomic Pathways while taking standing genetic variation into account. We modeled growth using a machine learning algorithm trained with dendroecological and genetic data obtained from over 2600 trees (62 populations divided in three genetic clusters) in four 48-year-old common gardens, and simulated growth until year 2100 at the common garden locations. Our study revealed that high summer and autumn temperatures negatively impacted BS growth. As a consequence of warming, this species is projected to experience a decline in growth by the end of the century, suggesting maladaptation to anticipated CC and a potential threat to its carbon sequestration capacity. This being said, we observed a clear difference in response to CC within and among genetic clusters, with the western cluster being more impacted than the central and eastern clusters. Our results show that intraspecific genetic variation, notably associated with the phylogeographic structure, must be considered when estimating the response of widespread species to CC.


Assuntos
Sequestro de Carbono , Mudança Climática , Variação Genética , Picea , Árvores , Picea/genética , Picea/crescimento & desenvolvimento , Árvores/genética , Árvores/crescimento & desenvolvimento , Filogeografia
3.
Glob Chang Biol ; 28(5): 1903-1918, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34873797

RESUMO

The boreal forest represents the terrestrial biome most heavily affected by climate change. However, no consensus exists regarding the impacts of these changes on the growth of tree species therein. Moreover, assessments of young tree responses in metrics transposable to forest management remain scarce. Here, we assessed the impacts of climate change on black spruce (Picea mariana [Miller] BSP) and jack pine (Pinus banksiana Lambert) growth, two dominant tree species in boreal forests of North America. Starting with a retrospective analysis including data from 2591 black spruces and 890 jack pines, we forecasted trends in 30-year height growth at the transitions from closed to open boreal coniferous forests in Québec, Canada. We considered three variables: (1) height growth, rarely used, but better-reflecting site potential than other growth proxies, (2) climate normals corresponding to the growth period of each stem, and (3) site type (as a function of texture, stoniness, and drainage), which can modify the effects of climate on tree growth. We found a positive effect of vapor pressure deficit on the growth of both species, although the effect on black spruce leveled off. For black spruce, temperatures had a positive effect on the height at 30 years, which was attenuated when and where climatic conditions became drier. Conversely, drought had a positive effect on height under cold conditions and a negative effect under warm conditions. Spruce growth was also better on mesic than on rocky and sub-hydric sites. For portions of the study areas with projected future climate within the calibration range, median height-change varied from 10 to 31% for black spruce and from 5 to 31% for jack pine, depending on the period and climate scenario. As projected increases are relatively small, they may not be sufficient to compensate for potential increases in future disturbances like forest fires.


Assuntos
Picea , Pinus , Mudança Climática , Picea/fisiologia , Pinus/fisiologia , Estudos Retrospectivos , Taiga , Árvores
4.
Glob Chang Biol ; 28(5): 1884-1902, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34854165

RESUMO

Many modelling approaches have been developed to project climate change impacts on forests. By analysing 'comparable' yet distinct variables (e.g. productivity, growth, dominance, biomass, etc.) through different structures, parameterizations and assumptions, models can yield different outcomes to rather similar initial questions. This variability can lead to some confusion for forest managers when developing strategies to adapt forest management to climate change. In this study, we standardized results from seven different models (Habitat suitability, trGam, StandLEAP, Quebec Landscape Dynamics, PICUS, LANDIS-II and LPJ-LMfire) to provide a simple and comprehensive assessment of the uncertainty and consensus in future performance (decline, status quo, improvement) for six tree species in Quebec under two radiative forcing scenarios (RCP 4.5 and RCP 8.5). Despite a large diversity of model types, we found a high level of agreement (73.1%) in projected species' performance across species, regions, scenarios and time periods. Low agreements in model outcomes resulted from small dissensions among models. Model agreement was much higher for cold-tolerant species (up to 99.9%), especially in southernmost forest regions and under RCP 8.5, indicating that these species are especially sensitive to increased climate forcing in the southern part of their distribution range. Lower agreement was found for thermophilous species (sugar maple, yellow birch) in boreal regions under RCP 8.5 mostly as a result of the way the different models are handling natural disturbances (e.g. wildfires) and lags in the response of populations (forest inertia or migration capability) to climate change. Agreement was slightly higher under high anthropogenic climate forcing, suggesting that important thresholds in species-specific performance might be crossed if radiative forcing reach values as high as those projected under RCP 8.5. We expect that strong agreement among models despite their different assumptions, predictors and structure should inspire the development of forest management strategies to be better adapted to climate change.


Assuntos
Mudança Climática , Árvores , Ecossistema , Florestas , Quebeque , Árvores/fisiologia
5.
Bioscience ; 72(3): 233-246, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35241971

RESUMO

Tree-ring time series provide long-term, annually resolved information on the growth of trees. When sampled in a systematic context, tree-ring data can be scaled to estimate the forest carbon capture and storage of landscapes, biomes, and-ultimately-the globe. A systematic effort to sample tree rings in national forest inventories would yield unprecedented temporal and spatial resolution of forest carbon dynamics and help resolve key scientific uncertainties, which we highlight in terms of evidence for forest greening (enhanced growth) versus browning (reduced growth, increased mortality). We describe jump-starting a tree-ring collection across the continent of North America, given the commitments of Canada, the United States, and Mexico to visit forest inventory plots, along with existing legacy collections. Failing to do so would be a missed opportunity to help chart an evidence-based path toward meeting national commitments to reduce net greenhouse gas emissions, urgently needed for climate stabilization and repair.

6.
Proc Natl Acad Sci U S A ; 116(7): 2749-2754, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30692257

RESUMO

Due to anthropogenic emissions and changes in land use, trees are now exposed to atmospheric levels of [[Formula: see text]] that are unprecedented for 650,000 y [Lüthi et al. (2008) Nature 453:379-382] (thousands of tree generations). Trees are expected to acclimate by modulating leaf-gas exchanges and alter water use efficiency which may result in forest productivity changes. Here, we present evidence of one of the strongest, nonlinear, and unequivocal postindustrial increases in intrinsic water use efficiency ([Formula: see text]) ever documented (+59%). A dual-isotope tree-ring analysis ([Formula: see text] and [Formula: see text]) covering 715 y of growth of North America's oldest boreal trees (Thuja occidentalis L.) revealed an unprecedented increase in [Formula: see text] that was directly linked to elevated assimilation rates of [Formula: see text] (A). However, limited nutrient availability, changes in carbon allocation strategies, and changes in stomatal density may have offset stem growth benefits awarded by the increased [Formula: see text] Our results demonstrate that even in scenarios where a positive [Formula: see text] fertilization effect is observed, other mechanisms may prevent trees from assimilating and storing supplementary anthropogenic emissions as above-ground biomass. In such cases, the sink capacity of forests in response to changing atmospheric conditions might be overestimated.


Assuntos
Dióxido de Carbono , Árvores/fisiologia , Água , Aclimatação , América do Norte , Árvores/crescimento & desenvolvimento
7.
Mol Ecol ; 30(16): 3898-3917, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33586257

RESUMO

As boreal forests face significant threats from climate change, understanding evolutionary trajectories of coniferous species has become fundamental to adapting management and conservation to a drying climate. We examined the genomic architecture underlying adaptive variation related to drought tolerance in 43 populations of a widespread boreal conifer, white spruce (Picea glauca [Moench] Voss), by combining genotype-environment associations, genotype-phenotype associations, and transcriptomics. Adaptive genetic variation was identified by correlating allele frequencies for 6,153 single nucleotide polymorphisms from 2,606 candidate genes with temperature, precipitation and aridity gradients, and testing for significant associations between genotypes and 11 dendrometric and drought-related traits (i.e., anatomical, growth response and climate-sensitivity traits) using a polygenic model. We identified a set of 285 genes significantly associated with a climatic factor or a phenotypic trait, including 110 that were differentially expressed in response to drought under greenhouse-controlled conditions. The interlinked phenotype-genotype-environment network revealed eight high-confidence genes involved in white spruce adaptation to drought, of which four were drought-responsive in the expression analysis. Our findings represent a significant step toward the characterization of the genomic basis of drought tolerance and adaptation to climate in conifers, which is essential to enable the establishment of resilient forests in view of new climate conditions.


Assuntos
Picea , Traqueófitas , Secas , Genômica , Fenótipo , Picea/genética , Traqueófitas/genética , Transcriptoma , Árvores/genética
8.
New Phytol ; 227(2): 427-439, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32173867

RESUMO

Drought intensity and frequency are increasing under global warming, with soil water availability now being a major factor limiting tree growth in circumboreal forests. Still, the adaptive capacity of trees in the face of future climatic regimes remains poorly documented. Using 1481 annually resolved tree-ring series from 29-yr-old trees, we evaluated the drought sensitivity of 43 white spruce (Picea glauca (Moench) Voss) populations established in a common garden experiment. We show that genetic variation among populations in response to drought plays a significant role in growth resilience. Local genetic adaptation allowed populations from drier geographical origins to grow better, as indicated by higher resilience to extreme drought events, compared with populations from more humid geographical origins. The substantial genetic variation found for growth resilience highlights the possibility of selecting for drought resilience in boreal conifers. As a major research outcome, we showed that adaptive genetic variation in response to changing local conditions can shape drought vulnerability at the intraspecific level. Our findings have wide implications for forest ecosystem management and conservation.


Assuntos
Secas , Traqueófitas , Mudança Climática , Ecossistema , Florestas , Variação Genética , Traqueófitas/genética , Árvores/genética
9.
Glob Chang Biol ; 26(8): 4538-4558, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32421921

RESUMO

The carbon isotope ratio (δ13 C) in tree rings is commonly used to derive estimates of the assimilation-to-stomatal conductance rate of trees, that is, intrinsic water-use efficiency (iWUE). Recent studies have observed increased iWUE in response to rising atmospheric CO2 concentrations (Ca ), in many different species, genera and biomes. However, increasing rates of iWUE vary widely from one study to another, likely because numerous covarying factors are involved. Here, we quantified changes in iWUE of two widely distributed boreal conifers using tree samples from a forest inventory network that were collected across a wide range of growing conditions (assessed using the site index, SI), developmental stages and stand histories. Using tree-ring isotopes analysis, we assessed the magnitude of increase in iWUE after accounting for the effects of tree size, stand age, nitrogen deposition, climate and SI. We also estimated how growth conditions have modulated tree physiological responses to rising Ca . We found that increases in tree size and stand age greatly influenced iWUE. The effect of Ca on iWUE was strongly reduced after accounting for these two variables. iWUE increased in response to Ca , mostly in trees growing on fertile stands, whereas iWUE remained almost unchanged on poor sites. Our results suggest that past studies could have overestimated the CO2 effect on iWUE, potentially leading to biased inferences about the future net carbon balance of the boreal forest. We also observed that this CO2 effect is weakening, which could affect the future capacity of trees to resist and recover from drought episodes.


Assuntos
Dióxido de Carbono , Água , Isótopos de Carbono/análise , Clima , Florestas
10.
Glob Chang Biol ; 25(8): 2793-2809, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31012507

RESUMO

Currently, there is no consensus regarding the way that changes in climate will affect boreal forest growth, where warming is occurring faster than in other biomes. Some studies suggest negative effects due to drought-induced stresses, while others provide evidence of increased growth rates due to a longer growing season. Studies focusing on the effects of environmental conditions on growth-climate relationships are usually limited to small sampling areas that do not encompass the full range of environmental conditions; therefore, they only provide a limited understanding of the processes at play. Here, we studied how environmental conditions and ontogeny modulated growth trends and growth-climate relationships of black spruce (Picea mariana) and jack pine (Pinus banksiana) using an extensive dataset from a forest inventory network. We quantified the long-term growth trends at the stand scale, based on analysis of the absolutely dated ring-width measurements of 2,266 trees. We assessed the relationship between annual growth rates and seasonal climate variables and evaluated the effects of various explanatory variables on long-term growth trends and growth-climate relationships. Both growth trends and growth-climate relationships were species-specific and spatially heterogeneous. While the growth of jack pine barely increased during the study period, we observed a growth decline for black spruce which was more pronounced for older stands. This decline was likely due to a negative balance between direct growth gains induced by improved photosynthesis during hotter-than-average growing conditions in early summers and the loss of growth occurring the following year due to the indirect effects of late-summer heat waves on accumulation of carbon reserves. For stands at the high end of our elevational gradient, frost damage during milder-than-average springs could act as an additional growth stressor. Competition and soil conditions also modified climate sensitivity, which suggests that effects of climate change will be highly heterogeneous across the boreal biome.


Assuntos
Picea , Pinus , América do Norte , Taiga , Árvores
11.
Proc Natl Acad Sci U S A ; 113(52): E8406-E8414, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-27956624

RESUMO

Considerable evidence exists that current global temperatures are higher than at any time during the past millennium. However, the long-term impacts of rising temperatures and associated shifts in the hydrological cycle on the productivity of ecosystems remain poorly understood for mid to high northern latitudes. Here, we quantify species-specific spatiotemporal variability in terrestrial aboveground biomass stem growth across Canada's boreal forests from 1950 to the present. We use 873 newly developed tree-ring chronologies from Canada's National Forest Inventory, representing an unprecedented degree of sampling standardization for a large-scale dendrochronological study. We find significant regional- and species-related trends in growth, but the positive and negative trends compensate each other to yield no strong overall trend in forest growth when averaged across the Canadian boreal forest. The spatial patterns of growth trends identified in our analysis were to some extent coherent with trends estimated by remote sensing, but there are wide areas where remote-sensing information did not match the forest growth trends. Quantifications of tree growth variability as a function of climate factors and atmospheric CO2 concentration reveal strong negative temperature and positive moisture controls on spatial patterns of tree growth rates, emphasizing the ecological sensitivity to regime shifts in the hydrological cycle. An enhanced dependence of forest growth on soil moisture during the late-20th century coincides with a rapid rise in summer temperatures and occurs despite potential compensating effects from increased atmospheric CO2 concentration.


Assuntos
Dióxido de Carbono/química , Mudança Climática , Florestas , Árvores/crescimento & desenvolvimento , Biomassa , Canadá , Ciclo do Carbono , Ecologia , Geografia , Modelos Estatísticos , Análise de Regressão , Taiga , Temperatura , Fatores de Tempo
12.
New Phytol ; 218(2): 630-645, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29314017

RESUMO

Local adaptation in tree species has been documented through a long history of common garden experiments where functional traits (height, bud phenology) are used as proxies for fitness. However, the ability to identify genes or genomic regions related to adaptation to climate requires the evaluation of traits that precisely reflect how and when climate exerts selective constraints. We combine dendroecology with association genetics to establish a link between genotypes, phenotypes and interannual climatic fluctuations. We illustrate this approach by examining individual tree responses embedded in the annual rings of 233 Pinus strobus trees growing in a common garden experiment representing 38 populations from the majority of its range. We found that interannual variability in growth was affected by low temperatures during spring and autumn, and by summer heat and drought. Among-population variation in climatic sensitivity was significantly correlated with the mean annual temperature of the provenance, suggesting local adaptation. Genotype-phenotype associations using these new tree-ring phenotypes validated nine candidate genes identified in a previous genetic-environment association study. Combining dendroecology with association genetics allowed us to assess tree vulnerability to past climate at fine temporal scales and provides avenues for future genomic studies on functional adaptation in forest trees.


Assuntos
Adaptação Fisiológica/genética , Mudança Climática , Estudos de Associação Genética , Pinus/genética , Pinus/fisiologia , Árvores/genética , Árvores/fisiologia , Genótipo , Geografia , Anotação de Sequência Molecular , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Característica Quantitativa Herdável , Quebeque
13.
Glob Chang Biol ; 22(2): 627-43, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26507106

RESUMO

An increasing number of studies conclude that water limitations and heat stress may hinder the capacity of black spruce (Picea mariana (Mill.) B.S.P.) trees, a dominant species of Canada's boreal forests, to grow and assimilate atmospheric carbon. However, there is currently no scientific consensus on the future of these forests over the next century in the context of widespread climate warming. The large spatial extent of black spruce forests across the Canadian boreal forest and associated variability in climate, demography, and site conditions pose challenges for projecting future climate change responses. Here we provide an evaluation of the impacts of climate warming and drying, as well as increasing [CO2 ], on the aboveground productivity of black spruce forests across Canada south of 60°N for the period 1971 to 2100. We use a new extensive network of tree-ring data obtained from Canada's National Forest Inventory, spatially explicit simulations of net primary productivity (NPP) and its drivers, and multivariate statistical modeling. We found that soil water availability is a significant driver of black spruce interannual variability in productivity across broad areas of the western to eastern Canadian boreal forest. Interannual variability in productivity was also found to be driven by autotrophic respiration in the warmest regions. In most regions, the impacts of soil water availability and respiration on interannual variability in productivity occurred during the phase of carbohydrate accumulation the year preceding tree-ring formation. Results from projections suggest an increase in the importance of soil water availability and respiration as limiting factors on NPP over the next century due to warming, but this response may vary to the extent that other factors such as carbon dioxide fertilization, and respiration acclimation to high temperature, contribute to dampening these limitations.


Assuntos
Mudança Climática , Modelos Teóricos , Picea/crescimento & desenvolvimento , Canadá , Dióxido de Carbono , Clima , Solo/química , Taiga , Temperatura , Água/análise
14.
Proc Natl Acad Sci U S A ; 109(51): 20966-70, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23213207

RESUMO

Wildfire activity in North American boreal forests increased during the last decades of the 20th century, partly owing to ongoing human-caused climatic changes. How these changes affect regional fire regimes (annual area burned, seasonality, and number, size, and severity of fires) remains uncertain as data available to explore fire-climate-vegetation interactions have limited temporal depth. Here we present a Holocene reconstruction of fire regime, combining lacustrine charcoal analyses with past drought and fire-season length simulations to elucidate the mechanisms linking long-term fire regime and climatic changes. We decomposed fire regime into fire frequency (FF) and biomass burned (BB) and recombined these into a new index to assess fire size (FS) fluctuations. Results indicated that an earlier termination of the fire season, due to decreasing summer radiative insolation and increasing precipitation over the last 7.0 ky, induced a sharp decrease in FF and BB ca. 3.0 kyBP toward the present. In contrast, a progressive increase of FS was recorded, which is most likely related to a gradual increase in temperatures during the spring fire season. Continuing climatic warming could lead to a change in the fire regime toward larger spring wildfires in eastern boreal North America.


Assuntos
Clima , Incêndios , Biomassa , Canadá , Simulação por Computador , Ecossistema , Lagos , Modelos Estatísticos , Distribuição Normal , América do Norte , Pólen , Estações do Ano , Temperatura , Árvores
15.
Glob Chang Biol ; 20(3): 851-66, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24115302

RESUMO

The 20th century was a pivotal period at high northern latitudes as it marked the onset of rapid climatic warming brought on by major anthropogenic changes in global atmospheric composition. In parallel, Arctic sea ice extent has been decreasing over the period of available satellite data records. Here, we document how these changes influenced vegetation productivity in adjacent eastern boreal North America. To do this, we used normalized difference vegetation index (NDVI) data, model simulations of net primary productivity (NPP) and tree-ring width measurements covering the last 300 years. Climatic and proxy-climatic data sets were used to explore the relationships between vegetation productivity and Arctic sea ice concentration and extent, and temperatures. Results indicate that an unusually large number of black spruce (Picea mariana) trees entered into a period of growth decline during the late-20th century (62% of sampled trees; n = 724 cross sections of age >70 years). This finding is coherent with evidence encoded in NDVI and simulated NPP data. Analyses of climatic and vegetation productivity relationships indicate that the influence of recent climatic changes in the studied forests has been via the enhanced moisture stress (i.e. greater water demands) and autotrophic respiration amplified by the declining sea ice concentration in Hudson Bay and Hudson Strait. The recent decline strongly contrasts with other growth reduction events that occurred during the 19th century, which were associated with cooling and high sea ice severity. The recent decline of vegetation productivity is the first one to occur under circumstances related to excess heat in a 300-year period, and further culminates with an intensifying wildfire regime in the region. Our results concur with observations from other forest ecosystems about intensifying temperature-driven drought stress and tree mortality with ongoing climatic changes.


Assuntos
Mudança Climática , Camada de Gelo , Picea/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , América do Norte
16.
Sci Total Environ ; 923: 171174, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38402972

RESUMO

Understanding how trees prioritize carbon gain at the cost of drought vulnerability under severe drought conditions is crucial for predicting which genetic groups and individuals will be resilient to future climate conditions. In this study, we investigated variations in growth, tree-ring anatomy as well as carbon and oxygen isotope ratios to assess the sensitivity and the xylem formation process in response to an episode of severe drought in 29 mature white spruce (Picea glauca [Moench] Voss) families grown in a common garden trial. During the drought episode, the majority of families displayed decreased growth and exhibited either sustained or increased intrinsic water-use efficiency (iWUE), which was largely influenced by reduced stomatal conductance as revealed by the dual carbon­oxygen isotope approach. Different water-use strategies were detected within white spruce populations in response to drought conditions. Our results revealed intraspecific variation in the prevailing physiological mechanisms underlying drought response within and among populations of Picea glauca. The presence of different genetic groups reflecting diverse water-use strategies within this largely-distributed conifer is likely to lessen the negative effects of drought and decrease the overall forest ecosystems' sensitivity to it.


Assuntos
Picea , Traqueófitas , Humanos , Secas , Ecossistema , Árvores , Isótopos de Carbono/análise , Carbono , Água , Isótopos de Oxigênio
17.
New Phytol ; 199(4): 1001-1011, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23691916

RESUMO

Strategic introduction of less flammable broadleaf vegetation into landscapes was suggested as a management strategy for decreasing the risk of boreal wildfires projected under climatic change. However, the realization and strength of this offsetting effect in an actual environment remain to be demonstrated. Here we combined paleoecological data, global climate models and wildfire modelling to assess regional fire frequency (RegFF, i.e. the number of fires through time) in boreal forests as it relates to tree species composition and climate over millennial time-scales. Lacustrine charcoals from northern landscapes of eastern boreal Canada indicate that RegFF during the mid-Holocene (6000-3000 yr ago) was significantly higher than pre-industrial RegFF (AD c. 1750). In southern landscapes, RegFF was not significantly higher than the pre-industrial RegFF in spite of the declining drought severity. The modelling experiment indicates that the high fire risk brought about by a warmer and drier climate in the south during the mid-Holocene was offset by a higher broadleaf component. Our data highlight an important function for broadleaf vegetation in determining boreal RegFF in a warmer climate. We estimate that its feedback may be large enough to offset the projected climate change impacts on drought conditions.


Assuntos
Mudança Climática , Ecossistema , Incêndios , Árvores/fisiologia , Canadá , Lagos
18.
Ecol Appl ; 23(1): 21-35, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23495633

RESUMO

There is general consensus that wildfires in boreal forests will increase throughout this century in response to more severe and frequent drought conditions induced by climate change. However, prediction models generally assume that the vegetation component will remain static over the next few decades. As deciduous species are less flammable than conifer species, it is reasonable to believe that a potential expansion of deciduous species in boreal forests, either occurring naturally or through landscape management, could offset some of the impacts of climate change on the occurrence of boreal wildfires. The objective of this study was to determine the potential of this offsetting effect through a simulation experiment conducted in eastern boreal North America. Predictions of future fire activity were made using multivariate adaptive regression splines (MARS) with fire behavior indices and ecological niche models as predictor variables so as to take into account the effects of changing climate and tree distribution on fire activity. A regional climate model (RCM) was used for predictions of future fire risk conditions. The experiment was conducted under two tree dispersal scenarios: the status quo scenario, in which the distribution of forest types does not differ from the present one, and the unlimited dispersal scenario, which allows forest types to expand their range to fully occupy their climatic niche. Our results show that future warming will create climate conditions that are more prone to fire occurrence. However, unlimited dispersal of southern restricted deciduous species could reduce the impact of climate change on future fire occurrence. Hence, the use of deciduous species could be a good option for an efficient strategic fire mitigation strategy aimed at reducing fire Propagation in coniferous landscapes and increasing public safety in remote populated areas of eastern boreal Canada under climate change.


Assuntos
Mudança Climática , Incêndios , Árvores/classificação , Animais , Demografia , Monitoramento Ambiental , Modelos Biológicos , Quebeque , Especificidade da Espécie , Fatores de Tempo
19.
Nat Commun ; 14(1): 6901, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903759

RESUMO

Rising atmospheric vapour pressure deficit (VPD) associated with climate change affects boreal forest growth via stomatal closure and soil dryness. However, the relationship between VPD and forest growth depends on the climatic context. Here we assess Canadian boreal forest responses to VPD changes from 1951-2018 using a well-replicated tree-growth increment network with approximately 5,000 species-site combinations. Of the 3,559 successful growth models, we observed a relationship between growth and concurrent summer VPD in one-third of the species-site combinations, and between growth and prior summer VPD in almost half of those combinations. The relationship between previous year VPD and current year growth was almost exclusively negative, while current year VPD also tended to reduce growth. Tree species, age, annual temperature, and soil moisture primarily determined tree VPD responses. Younger trees and species like white spruce and Douglas fir exhibited higher VPD sensitivity, as did areas with high annual temperature and low soil moisture. Since 1951, summer VPD increases in Canada have paralleled tree growth decreases, particularly in spruce species. Accelerating atmospheric dryness in the decades ahead will impair carbon storage and societal-economic services.


Assuntos
Picea , Árvores , Taiga , Canadá , Florestas , Solo
20.
iScience ; 26(6): 106807, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37255655

RESUMO

Dry and warm conditions have exacerbated the occurrence of large and severe wildfires over the past decade in Canada's Northwest Territories (NT). Although temperatures are expected to increase during the 21st century, we lack understanding of how the climate-vegetation-fire nexus might respond. We used a dynamic global vegetation model to project annual burn rates, as well as tree species composition and biomass in the NT during the 21st century using the IPCC's climate scenarios. Burn rates will decrease in most of the NT by the mid-21st century, concomitant with biomass loss of fire-prone evergreen needleleaf tree species, and biomass increase of broadleaf tree species. The southeastern NT is projected to experience enhanced fire activity by the late 21st century according to scenario RCP4.5, supported by a higher production of flammable evergreen needleleaf biomass. The results underlie the potential for major impacts of climate change on the NT's terrestrial ecosystems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA