Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 251(Pt 1): 118666, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38462087

RESUMO

In the present scenario, food security is of major concern due to exponentially increasing population and depleted crop production. The fungal diseases have contributed majorly to the scarcity of staple food products and economic loss worldwide. This problem could be tackled by preventing the crop loss during both pre and post-harvest seasons. During the current investigation, the bioactive compound eicosane was extracted from Streptomyces sp. KF15, subjected to purification and identified based on mass spectrometry and NMR analysis. The evaluation of in-vitro antifungal activity was done by poisoned food method, SEM analysis and growth pattern analysis. The bioactive compound eicosane with molecular weight of 282.5475 g/mol was purified by column chromatography and the straight chain hydrocarbon structure of CH3CH2(18)CH3 was elucidated by NMR analysis. In poisoned food assay, eicosane effectively inhibited the radial growth of all tested fungal pathogens; F. oxysporum was found to be the most sensitive with 24.2%, 33.3%, 42.4%, and 63.6% inhibition at 25-100 µg/ml concentrations. The SEM micrograph established clear differences in the morphology of eicosane treated fungi with damaged hyphae, flaccid mycelium and collapsed spores as compared to the tubular, turgid and entire fungi in control sample. Finally, the growth curve assay depicted the right side shift in the pattern of eicosane treated fungi indicating the delay in adapting to the conditions of growth and multiplication. The findings of this study encourage further research and development towards the novel antifungal drugs that can act against major phytopathogens.


Assuntos
Antifúngicos , Streptomyces , Streptomyces/química , Antifúngicos/farmacologia , Antifúngicos/química , Produtos Agrícolas/microbiologia , Fungicidas Industriais/farmacologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Fungos/efeitos dos fármacos
2.
Infect Genet Evol ; 99: 105254, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35217145

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), accountable for causing the coronavirus diseases 2019 (COVID-19), is already declared as a pandemic disease globally. Like previously reported SARS-CoV strain, the novel SARS-CoV-2 also initiates the viral pathogenesis via docking viral spike-protein with the membranal angiotensin-converting enzyme 2 (ACE2) - a receptor on variety of cells in the human body. Therefore, COVID-19 is broadly characterized as a disease that targets multiple organs, particularly causing acute complications via organ-specific pathogenesis accompanied by destruction of ACE2+ cells, including alveolus, cardiac microvasculature, endothelium, and glomerulus. Under such circumstances, the high expression of ACE2 in predisposing individuals associated with anomalous production of the renin-angiotensin system (RAS) may promote enhanced viral load in COVID-19, which comparatively triggers excessive apoptosis. Furthermore, multi-organ injuries were found linked to altered ACE2 expression and inequality between the ACE2/angiotensin-(1-7)/mitochondrial Ang system (MAS) and renin-angiotensin-system (RAS) in COVID-19 patients. However, the exact pathogenesis of multi-organ damage in COVID-19 is still obscure, but several perspectives have been postulated, involving altered ACE2 expression linked with direct/indirect damages by the virus-induced immune responses, such as cytokinin storm. Thus, insights into the invasion of a virus with respect to ACE2 expression site can be helpful to simulate or understand the possible complications in the targeted organ during viral infection. Hence, this review summarizes the multiple organs invasion by SARS CoV-2 linked with ACE2 expression and their consequences, which can be helpful in the management of the COVID-19 pathogenesis under life-threatening conditions.


Assuntos
COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Humanos , Pandemias , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA