Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 106(8): 2993-3007, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35435459

RESUMO

Fungal dye-decolorizing peroxidases (DyPs) have found applications in the treatment of dye-contaminated industrial wastes or to improve biomass digestibility. Their roles in fungal biology are uncertain, although it has been repeatedly suggested that they could participate in lignin degradation and/or modification. Using a comprehensive set of 162 fully sequenced fungal species, we defined seven distinct fungal DyP clades on basis of a sequence similarity network. Sequences from one of these clades clearly diverged from all others, having on average the lower isoelectric points and hydropathy indices, the highest number of N-glycosylation sites, and N-terminal sequence peptides for secretion. Putative proteins from this clade are absent from brown-rot and ectomycorrhizal species that have lost the capability of degrading lignin enzymatically. They are almost exclusively present in white-rot and other saprotrophic Basidiomycota that digest lignin enzymatically, thus lending support for a specific role of DyPs from this clade in biochemical lignin modification. Additional nearly full-length fungal DyP genes were isolated from the environment by sequence capture by hybridization; they all belonged to the clade of the presumably secreted DyPs and to another related clade. We suggest focusing our attention on the presumably intracellular DyPs from the other clades, which have not been characterized thus far and could represent enzyme proteins with novel catalytic properties. KEY POINTS: • A fungal DyP phylogeny delineates seven main sequence clades. • Putative extracellular DyPs form a single clade of Basidiomycota sequences. • Extracellular DyPs are associated to white-rot fungi.


Assuntos
Basidiomycota , Peroxidase , Basidiomycota/metabolismo , Corantes/metabolismo , Proteínas Fúngicas/metabolismo , Lignina/metabolismo , Peroxidase/química , Peroxidase/genética , Peroxidases/genética , Peroxidases/metabolismo
2.
Int J Mol Sci ; 21(9)2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32365577

RESUMO

Photosynthetic orchids associate with mycorrhizal fungi that can be mostly ascribed to the "rhizoctonia" species complex. Rhizoctonias' phylogenetic diversity covers a variety of ecological/nutritional strategies that include, beside the symbiosis establishment with host plants, endophytic and pathogenic associations with non-orchid plants or saprotrophic soil colonization. In addition, orchid mycorrhizal fungi (OMF) that establish a symbiotic relationship with an orchid host can later proliferate in browning and rotting orchid tissues. Environmental triggers and molecular mechanisms governing the switch leading to either a saprotrophic or a mycorrhizal behavior in OMF remain unclear. As the sequenced OMF genomes feature a wide range of genes putatively involved in the degradation of plant cell wall (PCW) components, we tested if these transitions may be correlated with a change in the expression of some PCW degrading enzymes. Regulation of several genes encoding PCW degrading enzymes was evaluated during saprotrophic growth of the OMF Tulasnella calospora on different substrates and under successful and unsuccessful mycorrhizal symbioses. Fungal gene expression in planta was investigated in two orchid species, the terrestrial Mediterranean Serapias vomeracea and the epiphytic tropical Cattleya purpurata. Although we only tested a subset of the CAZyme genes identified in the T. calospora genome, and we cannot exclude therefore a role for different CAZyme families or members inside a family, the results showed that the degradative potential of T. calospora is finely regulated during saprotrophic growth and in symbiosis, often with a different regulation in the two orchid species. These data pose novel questions about the role of fungal PCW degrading enzymes in the development of unsuccessful and successful interactions.


Assuntos
Basidiomycota , Orchidaceae/microbiologia , Orchidaceae/fisiologia , Simbiose , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Germinação , Micorrizas , Sementes
3.
New Phytol ; 213(3): 1428-1439, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27861936

RESUMO

Mycorrhizal fungi are essential for the survival of orchid seedlings under natural conditions. The distribution of these fungi in soil can constrain the establishment and resulting spatial arrangement of orchids at the local scale, but the actual extent of occurrence and spatial patterns of orchid mycorrhizal (OrM) fungi in soil remain largely unknown. We addressed the fine-scale spatial distribution of OrM fungi in two orchid-rich Mediterranean grasslands by means of high-throughput sequencing of fungal ITS2 amplicons, obtained from soil samples collected either directly beneath or at a distance from adult Anacamptis morio and Ophrys sphegodes plants. Like ectomycorrhizal and arbuscular mycobionts, OrM fungi (tulasnelloid, ceratobasidioid, sebacinoid and pezizoid fungi) exhibited significant horizontal spatial autocorrelation in soil. However, OrM fungal read numbers did not correlate with distance from adult orchid plants, and several of these fungi were extremely sporadic or undetected even in the soil samples containing the orchid roots. Orchid mycorrhizal 'rhizoctonias' are commonly regarded as unspecialized saprotrophs. The sporadic occurrence of mycobionts of grassland orchids in host-rich stands questions the view of these mycorrhizal fungi as capable of sustained growth in soil.


Assuntos
Fungos/fisiologia , Pradaria , Micorrizas/fisiologia , Orchidaceae/microbiologia , Microbiologia do Solo , Biodiversidade , Raízes de Plantas/microbiologia , Especificidade da Espécie
4.
New Phytol ; 213(1): 365-379, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27859287

RESUMO

Orchids are highly dependent on their mycorrhizal fungal partners for nutrient supply, especially during early developmental stages. In addition to organic carbon, nitrogen (N) is probably a major nutrient transferred to the plant because orchid tissues are highly N-enriched. We know almost nothing about the N form preferentially transferred to the plant or about the key molecular determinants required for N uptake and transfer. We identified, in the genome of the orchid mycorrhizal fungus Tulasnella calospora, two functional ammonium transporters and several amino acid transporters but found no evidence of a nitrate assimilation system, in agreement with the N preference of the free-living mycelium grown on different N sources. Differential expression in symbiosis of a repertoire of fungal and plant genes involved in the transport and metabolism of N compounds suggested that organic N may be the main form transferred to the orchid host and that ammonium is taken up by the intracellular fungus from the apoplatic symbiotic interface. This is the first study addressing the genetic determinants of N uptake and transport in orchid mycorrhizas, and provides a model for nutrient exchanges at the symbiotic interface, which may guide future experiments.


Assuntos
Basidiomycota/genética , Genes de Plantas , Micorrizas/genética , Nitrogênio/metabolismo , Orchidaceae/genética , Orchidaceae/microbiologia , Simbiose/genética , Basidiomycota/efeitos dos fármacos , Basidiomycota/crescimento & desenvolvimento , Biomassa , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes Fúngicos , Teste de Complementação Genética , Mutação/genética , Micorrizas/efeitos dos fármacos , Micorrizas/crescimento & desenvolvimento , Nitrogênio/farmacologia , Orchidaceae/efeitos dos fármacos , Filogenia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Simbiose/efeitos dos fármacos
5.
Can J Microbiol ; 63(10): 841-850, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28793203

RESUMO

Wood decomposition is a key step of the terrestrial carbon cycle and is of economic importance. It is essentially a microbiological process performed by fungi and to an unknown extent by bacteria. To gain access to the genes expressed by the diverse microbial communities participating in wood decay, we developed an RNA extraction protocol from this recalcitrant material rich in polysaccharides and phenolic compounds. This protocol was implemented on 22 wood samples representing as many tree species from 11 plant families in the Angiosperms and Gymnosperms. RNA was successfully extracted from all samples and converted into cDNAs from which were amplified both fungal and bacterial protein coding genes, including genes encoding hydrolytic enzymes participating in lignocellulose hydrolysis. This protocol applicable to a wide range of decomposing wood types represents a first step towards a metatranscriptomic analysis of wood degradation under natural conditions.


Assuntos
Fungos/enzimologia , Perfilação da Expressão Gênica , Lignina/metabolismo , RNA/isolamento & purificação , Árvores/classificação , DNA Complementar/química , DNA Complementar/genética , Fungos/genética , Hidrólise , RNA/genética , Análise de Sequência de DNA , Árvores/enzimologia , Árvores/genética , Madeira/classificação , Madeira/enzimologia , Madeira/genética
6.
New Phytol ; 205(3): 1308-1319, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25382295

RESUMO

Many adult orchids, especially photoautotrophic species, associate with a diverse range of mycorrhizal fungi, but little is known about the temporal changes that might occur in the diversity and functioning of orchid mycorrhiza during vegetative and reproductive plant growth. Temporal variations in the spectrum of mycorrhizal fungi and in stable isotope natural abundance were investigated in adult plants of Anacamptis morio, a wintergreen meadow orchid. Anacamptis morio associated with mycorrhizal fungi belonging to Tulasnella, Ceratobasidium and a clade of Pezizaceae (Ascomycetes). When a complete growing season was investigated, multivariate analyses indicated significant differences in the mycorrhizal fungal community. Among fungi identified from manually isolated pelotons, Tulasnella was more common in autumn and winter, the pezizacean clade was very frequent in spring, and Ceratobasidium was more frequent in summer. By contrast, relatively small variations were found in carbon (C) and nitrogen (N) stable isotope natural abundance, A. morio samples showing similar (15)N enrichment and (13)C depletion at the different sampling times. These observations suggest that, irrespective of differences in the seasonal environmental conditions, the plant phenological stages and the associated fungi, the isotopic content in mycorrhizal A. morio remains fairly constant over time.


Assuntos
Biodiversidade , Pradaria , Micorrizas/fisiologia , Orchidaceae/microbiologia , Processos Autotróficos , Teorema de Bayes , Isótopos de Carbono , Dados de Sequência Molecular , Isótopos de Nitrogênio , Filogenia , Folhas de Planta/metabolismo , Simbiose , Fatores de Tempo
7.
Planta ; 239(6): 1337-49, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24760407

RESUMO

Orchids fully depend on symbiotic interactions with specific soil fungi for seed germination and early development. Germinated seeds give rise to a protocorm, a heterotrophic organ that acquires nutrients, including organic carbon, from the mycorrhizal partner. It has long been debated if this interaction is mutualistic or antagonistic. To investigate the molecular bases of the orchid response to mycorrhizal invasion, we developed a symbiotic in vitro system between Serapias vomeracea, a Mediterranean green meadow orchid, and the rhizoctonia-like fungus Tulasnella calospora. 454 pyrosequencing was used to generate an inventory of plant and fungal genes expressed in mycorrhizal protocorms, and plant genes could be reliably identified with a customized bioinformatic pipeline. A small panel of plant genes was selected and expression was assessed by real-time quantitative PCR in mycorrhizal and non-mycorrhizal protocorm tissues. Among these genes were some markers of mutualistic (e.g. nodulins) as well as antagonistic (e.g. pathogenesis-related and wound/stress-induced) genes. None of the pathogenesis or wound/stress-related genes were significantly up-regulated in mycorrhizal tissues, suggesting that fungal colonization does not trigger strong plant defence responses. In addition, the highest expression fold change in mycorrhizal tissues was found for a nodulin-like gene similar to the plastocyanin domain-containing ENOD55. Another nodulin-like gene significantly more expressed in the symbiotic tissues of mycorrhizal protocorms was similar to a sugar transporter of the SWEET family. Two genes coding for mannose-binding lectins were significantly up-regulated in the presence of the mycorrhizal fungus, but their role in the symbiosis is unclear.


Assuntos
Regulação Fúngica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Micorrizas/metabolismo , Orchidaceae/microbiologia , Simbiose/fisiologia , Sequência de Aminoácidos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Micorrizas/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Fúngico , RNA de Plantas , Simbiose/genética , Transcriptoma , Regulação para Cima
8.
Am J Bot ; 98(7): 1148-63, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21712419

RESUMO

PREMISE OF THE STUDY: We investigated whether four widespread, photosynthetic Mediterranean meadow orchids (Ophrys fuciflora, Anacamptis laxiflora, Orchis purpurea, and Serapias vomeracea) had either nutritional dependency on mycobionts or mycorrhizal fungal specificity. Nonphotosynthetic orchids generally engage in highly specific interactions with fungal symbionts that provide them with organic carbon. By contrast, fully photosynthetic orchids in sunny, meadow habitats have been considered to lack mycorrhizal specificity. METHODS: We performed both culture-dependent and culture-independent ITS sequence analysis to identify fungi from orchid roots. By analyzing stable isotope ((13)C and (15)N) natural abundances, we also determined the degree of autotrophy and mycoheterotrophy in the four orchid species. KEY RESULTS: Phylogenetic and multivariate comparisons indicated that Or. purpurea and Oph. fuciflora featured lower fungal diversity and more specific mycobiont spectra than A. laxiflora and S. vomeracea. All orchid species were significantly enriched in (15)N compared with neighboring non-orchid plants. Orchis purpurea had the most pronounced N gain from fungi and differed from the other orchids in also obtaining C from fungi. CONCLUSIONS: These results indicated that even in sunny Mediterranean meadows, orchids may be mycoheterotrophic, with correlated mycorrhizal fungal specificity.


Assuntos
Ecossistema , Processos Heterotróficos/fisiologia , Micorrizas/fisiologia , Orchidaceae/microbiologia , Orchidaceae/fisiologia , Fotossíntese/fisiologia , Teorema de Bayes , Carbono/metabolismo , Isótopos de Carbono , Contagem de Colônia Microbiana , Análise Discriminante , Endófitos/fisiologia , Região do Mediterrâneo , Microscopia de Fluorescência , Dados de Sequência Molecular , Micorrizas/genética , Micorrizas/isolamento & purificação , Nitrogênio/metabolismo , Isótopos de Nitrogênio , Orchidaceae/citologia , Filogenia , Rhizoctonia/genética , Rhizoctonia/isolamento & purificação , Rhizoctonia/fisiologia , Alinhamento de Sequência , Especificidade da Espécie
9.
Mycorrhiza ; 21(2): 97-104, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20428900

RESUMO

In most mycorrhizal symbioses, phylogenetically distinct fungi colonize simultaneously the roots of individual host plants. A matter of debate is whether plants can distinguish among these fungal partners and differentiate their cellular responses. We have addressed this question in the orchid mycorrhizal symbiosis, where individual roots of the Mediterranean species Limodorum abortivum can be colonized by a dominant unculturable fungal symbiont belonging to the genus Russula and by more sporadic mycelia in the genus Ceratobasidium (form-genus Rhizoctonia). The phylogenetic position of the Ceratobasidium symbionts was further investigated in this work. Both Russula and Ceratobasidium symbionts form intracellular coils in the cortical roots of L. abortivum, but hyphae are very different in size and morphology, making the two fungi easily distinguishable. We have used John Innes Monoclonal 5, a widely used monoclonal antibody against pectin, to investigate the composition of the symbiotic plant interface around the intracellular coils formed by the two fungal partners. Immunolabelling experiments showed that pectin is exclusively found in the interface formed around the Ceratobasidium, and not around the Russula symbiont. These data indicate that the plant responses towards distinct mycorrhizal fungal partners can vary at a cellular level.


Assuntos
Basidiomycota/genética , DNA Fúngico/genética , Micorrizas/genética , Orchidaceae/fisiologia , Pectinas/metabolismo , Simbiose , Basidiomycota/classificação , Basidiomycota/isolamento & purificação , Basidiomycota/ultraestrutura , DNA Fúngico/química , DNA Ribossômico/química , DNA Ribossômico/genética , Imuno-Histoquímica , Microscopia Eletrônica de Transmissão , Micorrizas/isolamento & purificação , Micorrizas/fisiologia , Micorrizas/ultraestrutura , Orchidaceae/microbiologia , Orchidaceae/ultraestrutura , Pectinas/imunologia , Filogenia , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Raízes de Plantas/ultraestrutura , Alinhamento de Sequência
10.
PLoS One ; 15(12): e0244682, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33378355

RESUMO

In recent years, metabarcoding has become a key tool to describe microbial communities from natural and artificial environments. Thanks to its high throughput nature, metabarcoding efficiently explores microbial biodiversity under different conditions. It can be performed on environmental (e)DNA to describe so-called total microbial community, or from environmental (e)RNA to describe active microbial community. As opposed to total microbial communities, active ones exclude dead or dormant organisms. For what concerns Fungi, which are mostly filamentous microorganisms, the relationship between DNA-based (total) and RNA-based (active) communities is unclear. In the present study, we evaluated the consequences of performing metabarcoding on both soil and wood-extracted eDNA and eRNA to delineate molecular operational taxonomic units (MOTUs) and differentiate fungal communities according to the environment they originate from. DNA and RNA-based communities differed not only in their taxonomic composition, but also in the relative abundances of several functional guilds. From a taxonomic perspective, we showed that several higher taxa are globally more represented in either "active" or "total" microbial communities. We also observed that delineation of MOTUs based on their co-occurrence among DNA and RNA sequences highlighted differences between the studied habitats that were overlooked when all MOTUs were considered, including those identified exclusively by eDNA sequences. We conclude that metabarcoding on eRNA provides original functional information on the specific roles of several taxonomic or functional groups that would not have been revealed using eDNA alone.


Assuntos
DNA Ambiental , Fungos , Micobioma/genética , RNA , Código de Barras de DNA Taxonômico , DNA Fúngico , Monitoramento Ambiental , Fungos/genética
11.
Virus Evol ; 6(2): veaa076, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33324490

RESUMO

Mutualistic plant-associated fungi are recognized as important drivers in plant evolution, diversity, and health. The discovery that mycoviruses can take part and play important roles in symbiotic tripartite interactions has prompted us to study the viromes associated with a collection of ericoid and orchid mycorrhizal (ERM and ORM, respectively) fungi. Our study, based on high-throughput sequencing of transcriptomes (RNAseq) from fungal isolates grown in axenic cultures, revealed in both ERM and ORM fungi the presence of new mycoviruses closely related to already classified virus taxa, but also new viruses that expand the boundaries of characterized RNA virus diversity to previously undescribed evolutionary trajectories. In ERM fungi, we provide first evidence of a bipartite virus, distantly related to narnaviruses, that splits the RNA-dependent RNA polymerase (RdRP) palm domain into two distinct proteins, encoded by each of the two segments. Furthermore, in one isolate of the ORM fungus Tulasnella spp. we detected a 12 kb genomic fragment coding for an RdRP with features of bunyavirus-like RdRPs. However, this 12 kb genomic RNA has the unique features, for Bunyavirales members, of being tri-cistronic and carrying ORFs for the putative RdRP and putative nucleocapsid in ambisense orientation on the same genomic RNA. Finally, a number of ORM fungal isolates harbored a group of ambisense bicistronic viruses with a genomic size of around 5 kb, where we could identify a putative RdRP palm domain that has some features of plus strand RNA viruses; these new viruses may represent a new lineage in the Riboviria, as they could not be reliably assigned to any of the branches in the recently derived monophyletic tree that includes most viruses with an RNA genome.

12.
Nat Commun ; 11(1): 5125, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046698

RESUMO

Mycorrhizal fungi are mutualists that play crucial roles in nutrient acquisition in terrestrial ecosystems. Mycorrhizal symbioses arose repeatedly across multiple lineages of Mucoromycotina, Ascomycota, and Basidiomycota. Considerable variation exists in the capacity of mycorrhizal fungi to acquire carbon from soil organic matter. Here, we present a combined analysis of 135 fungal genomes from 73 saprotrophic, endophytic and pathogenic species, and 62 mycorrhizal species, including 29 new mycorrhizal genomes. This study samples ecologically dominant fungal guilds for which there were previously no symbiotic genomes available, including ectomycorrhizal Russulales, Thelephorales and Cantharellales. Our analyses show that transitions from saprotrophy to symbiosis involve (1) widespread losses of degrading enzymes acting on lignin and cellulose, (2) co-option of genes present in saprotrophic ancestors to fulfill new symbiotic functions, (3) diversification of novel, lineage-specific symbiosis-induced genes, (4) proliferation of transposable elements and (5) divergent genetic innovations underlying the convergent origins of the ectomycorrhizal guild.


Assuntos
Fungos/genética , Genoma Fúngico , Micorrizas/genética , Simbiose , Ecossistema , Evolução Molecular , Proteínas Fúngicas/genética , Fungos/classificação , Fungos/fisiologia , Micorrizas/classificação , Micorrizas/fisiologia , Filogenia , Fenômenos Fisiológicos Vegetais , Plantas/microbiologia
13.
Appl Microbiol Biotechnol ; 82(2): 359-70, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19137287

RESUMO

Nonylphenol, the most abundant environmental pollutant with endocrine disrupting activity, is also toxic to plants and microorganisms, but its actual impact in the field is unknown. In this study, diversity of culturable soil microfungal and plant communities was assessed in a disused industrial estate, at three sites featuring different nonylphenol pollution. Although soil microfungal assemblages varied widely among the sites, no significant correlation was found with point pollutant concentrations, thus suggesting indirect effects of soil contamination on microfungal assemblages. The potential of indigenous fungi and plants to remove nonylphenol was assessed in mesocosm experiments. Poplar plants and a fungal consortium consisting of the most abundant strains in the nonylphenol-polluted soil samples were tested alone or in combination for their ability to reduce, under greenhouse conditions, nonylphenol levels either in a sterile, artificially contaminated sand substrate, or in two non-sterile soils from the original industrial area. Introduction of indigenous fungi consistently reduced nonylphenol levels in all substrates, up to ca. 70% depletion, whereas introduction of the plant proved to be effective only with high initial pollutant levels. In native non-sterile soil, nonylphenol depletion following fungal inoculation correlated with biostimulation of indigenous fungi, suggesting positive interactions between introduced and resident fungi.


Assuntos
Fungos/metabolismo , Fenóis/metabolismo , Plantas/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Biodiversidade , Fungos/crescimento & desenvolvimento , Fenóis/química , Desenvolvimento Vegetal , Poluentes do Solo/química
14.
FEMS Microbiol Lett ; 288(1): 9-18, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18778277

RESUMO

The introduction of genetically modified (GM) plants in agroecosystems raises concern about possible effects on nontarget species. The impact of a tomato line transformed for constitutive expression of tobacco beta-1,3-glucanase and chitinase on indigenous nonpathogenic fungi was investigated. In greenhouse experiments, no significant differences were found in the colonization by arbuscular mycorrhizal fungi. Diversity indices computed from over 20 500 colonies of culturable rhizosphere and phyllosphere saprotrophic microfungi, assigned to 165 species (plus > 80 sterile morphotypes), showed no significant differences between GM and wild-type plants. Differences were found by discriminant analysis in both the rhizosphere and the phyllosphere, but such effects were minor compared with those linked to different plant growth stages.


Assuntos
Fungos , Raízes de Plantas/microbiologia , Plantas Geneticamente Modificadas , Solanum lycopersicum/genética , Antifúngicos/metabolismo , Quitinases/genética , Quitinases/metabolismo , Fungos/isolamento & purificação , Engenharia Genética , Glucana 1,3-beta-Glucosidase/genética , Glucana 1,3-beta-Glucosidase/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/microbiologia , Nicotiana/enzimologia
15.
FEMS Microbiol Lett ; 285(2): 242-9, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18616596

RESUMO

Asbestos minerals are commonly found in serpentine rocks and because of the hazard to human health, research has recently focused on possible detoxification strategies. Some fungal species that inhabit serpentine sites (two disused chrysotile asbestos mines in the Western Alps) have been isolated and characterized in order to obtain data on their biodiversity and bioweathering abilities on chrysotile fibres. The three dominant species (Verticillium leptobactrum, Paecilomyces lilacinus and Aspergillus fumigatus) have proved to be able to actively remove iron from chrysotile fibres, V. leptobactrum being the most efficient. A wide range of serpentinicolous fungi release siderophores, iron-chelating compounds, that could play a role in iron extraction from fibres. Iron removal had been correlated previously with a decrease in the toxic potential of fibres, and a biotechnological application of fungi can be envisaged for asbestos detoxification.


Assuntos
Asbestos Serpentinas/metabolismo , Fungos/classificação , Fungos/metabolismo , Aspergillus fumigatus/metabolismo , Quelantes/metabolismo , Fungos/isolamento & purificação , Ferro/metabolismo , Paecilomyces/metabolismo , Sideróforos/biossíntese , Verticillium/metabolismo
16.
Nat Commun ; 9(1): 3033, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-30072764

RESUMO

Soil microbial communities play a crucial role in ecosystem functioning, but it is unknown how co-occurrence networks within these communities respond to disturbances such as climate extremes. This represents an important knowledge gap because changes in microbial networks could have implications for their functioning and vulnerability to future disturbances. Here, we show in grassland mesocosms that drought promotes destabilising properties in soil bacterial, but not fungal, co-occurrence networks, and that changes in bacterial communities link more strongly to soil functioning during recovery than do changes in fungal communities. Moreover, we reveal that drought has a prolonged effect on bacterial communities and their co-occurrence networks via changes in vegetation composition and resultant reductions in soil moisture. Our results provide new insight in the mechanisms through which drought alters soil microbial communities with potential long-term consequences, including future plant community composition and the ability of aboveground and belowground communities to withstand future disturbances.


Assuntos
Bactérias/metabolismo , Secas , Fungos/metabolismo , Microbiologia do Solo , Biomassa , Ecossistema , Modelos Biológicos , Plantas/microbiologia , Solo
17.
Plant Sci ; 263: 39-45, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28818382

RESUMO

Orchid mycorrhizal protocorms and roots are heterogeneous structures composed of different plant cell-types, where cells colonized by intracellular fungal coils (the pelotons) are close to non-colonized plant cells. Moreover, the fungal coils undergo rapid turnover inside the colonized cells, so that plant cells containing coils at different developmental stages can be observed in the same tissue section. Here, we have investigated by laser microdissection (LMD) the localization of specific plant gene transcripts in different cell-type populations collected from mycorrhizal protocorms and roots of the Mediterranean orchid Serapias vomeracea colonized by Tulasnella calospora. RNAs extracted from the different cell-type populations have been used to study plant gene expression, focusing on genes potentially involved in N uptake and transport and previously identified as up-regulated in symbiotic protocorms. Results clearly showed that some plant N transporters are differentially expressed in cells containing fungal coils at different developmental stages, as well as in non-colonized cells, and allowed the identification of new functional markers associated to coil-containing cells.


Assuntos
Basidiomycota/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/genética , Micorrizas/fisiologia , Orchidaceae/genética , Simbiose , Basidiomycota/citologia , Transporte Biológico , Microdissecção e Captura a Laser , Micorrizas/citologia , Nitrogênio/metabolismo , Orchidaceae/citologia , Orchidaceae/microbiologia , Especificidade de Órgãos , Proteínas de Plantas/genética , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Regulação para Cima
18.
Nat Commun ; 8: 14349, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28176768

RESUMO

Soil organisms have an important role in aboveground community dynamics and ecosystem functioning in terrestrial ecosystems. However, most studies have considered soil biota as a black box or focussed on specific groups, whereas little is known about entire soil networks. Here we show that during the course of nature restoration on abandoned arable land a compositional shift in soil biota, preceded by tightening of the belowground networks, corresponds with enhanced efficiency of carbon uptake. In mid- and long-term abandoned field soil, carbon uptake by fungi increases without an increase in fungal biomass or shift in bacterial-to-fungal ratio. The implication of our findings is that during nature restoration the efficiency of nutrient cycling and carbon uptake can increase by a shift in fungal composition and/or fungal activity. Therefore, we propose that relationships between soil food web structure and carbon cycling in soils need to be reconsidered.


Assuntos
Biomassa , Biota/fisiologia , Cadeia Alimentar , Microbiologia do Solo , Solo/química , Bactérias/metabolismo , Carbono/química , Recuperação e Remediação Ambiental , Fungos/metabolismo
19.
Nat Genet ; 47(4): 410-5, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25706625

RESUMO

To elucidate the genetic bases of mycorrhizal lifestyle evolution, we sequenced new fungal genomes, including 13 ectomycorrhizal (ECM), orchid (ORM) and ericoid (ERM) species, and five saprotrophs, which we analyzed along with other fungal genomes. Ectomycorrhizal fungi have a reduced complement of genes encoding plant cell wall-degrading enzymes (PCWDEs), as compared to their ancestral wood decayers. Nevertheless, they have retained a unique array of PCWDEs, thus suggesting that they possess diverse abilities to decompose lignocellulose. Similar functional categories of nonorthologous genes are induced in symbiosis. Of induced genes, 7-38% are orphan genes, including genes that encode secreted effector-like proteins. Convergent evolution of the mycorrhizal habit in fungi occurred via the repeated evolution of a 'symbiosis toolkit', with reduced numbers of PCWDEs and lineage-specific suites of mycorrhiza-induced genes.


Assuntos
Genoma Fúngico/genética , Micorrizas/genética , Seleção Genética , Simbiose/genética , Virulência/genética , Sequência de Bases , Evolução Molecular , Deleção de Genes , Regulação Fúngica da Expressão Gênica/genética , Dados de Sequência Molecular , Micorrizas/patogenicidade , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia
20.
New Phytol ; 155(3): 481-498, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33873322

RESUMO

• The diversity of dark sterile mycelia (DSM) associated with the roots of neighboring healthy ectomycorrhizal Pinus halepensis and endomycorrhizal Rosmarinus officinalis plants in a Mediterranean ecosystem in Italy was investigated to assess taxonomic affinities of these poorly known root endophytes. • More than 260 fungal isolates were obtained and ascribed to distinct morphotypes based on their macro- and microscopic features. Polymerase chain reaction-restriction fragment length polymorphism and sequence analyses of the internal transcribed spacers (ITS1-5.8S-ITS2) and 18S rDNA regions were carried out for representatives of the morphotypes obtained from both hosts over an 11-yr period. • Molecular evidence matched morphological group circumscription. Recognition of systematic affinities was possible with varying degrees of resolution for the different morphotypes. Morph 2 was closely related to Rhizopycnis vagum (within Dothideomycetidae), Morph 1 to Diaporthe / Phomopsis (within Sordariomycetidae), whereas Morphs 3a, 3b, 3c and 3d could only be given taxonomic placement at a higher level (Dothideomycetidae and Chaetothyriomycetidae). • This peculiar systematic spectrum suggests that actual DSM diversity in nature is still largely underestimated. Morphophysiological convergence among morphotypes, and ecological traits possibly involved in interactions with plant hosts are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA