Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Opin Neurobiol ; 10(2): 250-9, 2000 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10753797

RESUMO

Recent computational models, or mathematical realizations of neurobiological theories, are providing insights into the organization and workings of the association cortex. Such models concern the construction of cortical maps, the neural basis of cognitive functions such as visual perception, reward-motivated learning and some aspects of consciousness.


Assuntos
Associação , Córtex Cerebral/fisiologia , Simulação por Computador , Modelos Neurológicos , Animais , Mapeamento Encefálico/métodos , Cognição/fisiologia , Estado de Consciência/fisiologia , Haplorrinos , Humanos , Aprendizagem/fisiologia , Redes Neurais de Computação , Percepção Visual/fisiologia
2.
Biol Rev Camb Philos Soc ; 76(2): 161-209, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-11396846

RESUMO

In this article, we present a self-contained review of recent work on complex biological systems which exhibit no characteristic scale. This property can manifest itself with fractals (spatial scale invariance), flicker noise or 1/f-noise where f denotes the frequency of a signal (temporal scale invariance) and power laws (scale invariance in the size and duration of events in the dynamics of the system). A hypothesis recently put forward to explain these scale-free phenomomena is criticality, a notion introduced by physicists while studying phase transitions in materials, where systems spontaneously arrange themselves in an unstable manner similar, for instance, to a row of dominoes. Here, we review in a critical manner work which investigates to what extent this idea can be generalized to biology. More precisely, we start with a brief introduction to the concepts of absence of characteristic scale (power-law distributions, fractals and 1/f-noise) and of critical phenomena. We then review typical mathematical models exhibiting such properties: edge of chaos, cellular automata and self-organized critical models. These notions are then brought together to see to what extent they can account for the scale invariance observed in ecology, evolution of species, type III epidemics and some aspects of the central nervous system. This article also discusses how the notion of scale invariance can give important insights into the workings of biological systems.


Assuntos
Evolução Biológica , Encéfalo/fisiologia , Surtos de Doenças/estatística & dados numéricos , Ecologia , Modelos Biológicos , Animais , Fractais , Humanos , Dinâmica não Linear
4.
Phys Rev D Part Fields ; 50(2): 1010-1015, 1994 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-10017799
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA