Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 16(1): 1821-39, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25594873

RESUMO

In this work we evaluated several genes involved in gluconeogenesis, glycolysis and glycogen metabolism, the major pathways for carbohydrate catabolism and anabolism, in the BME26 Rhipicephalus microplus embryonic cell line. Genetic and catalytic control of the genes and enzymes associated with these pathways are modulated by alterations in energy resource availability (primarily glucose). BME26 cells in media were investigated using three different glucose concentrations, and changes in the transcription levels of target genes in response to carbohydrate utilization were assessed. The results indicate that several genes, such as glycogen synthase (GS), glycogen synthase kinase 3 (GSK3), phosphoenolpyruvate carboxykinase (PEPCK), and glucose-6 phosphatase (GP) displayed mutual regulation in response to glucose treatment. Surprisingly, the transcription of gluconeogenic enzymes was found to increase alongside that of glycolytic enzymes, especially pyruvate kinase, with high glucose treatment. In addition, RNAi data from this study revealed that the transcription of gluconeogenic genes in BME26 cells is controlled by GSK-3. Collectively, these results improve our understanding of how glucose metabolism is regulated at the genetic level in tick cells.


Assuntos
Gluconeogênese , Glucose/metabolismo , Rhipicephalus/metabolismo , Animais , Linhagem Celular , Regulação da Expressão Gênica , Glucose/genética , Rhipicephalus/citologia , Rhipicephalus/embriologia , Rhipicephalus/genética
2.
Biochim Biophys Acta ; 1830(3): 2574-82, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23274741

RESUMO

BACKGROUND: Tick embryogenesis is a metabolically intensive process developed under tightly controlled conditions and whose components are poorly understood. METHODS: In order to characterize the role of AKT (protein kinase B) in glycogen metabolism and cell viability, glycogen determination, identification and cloning of an AKT from Rhipicephalus microplus were carried out, in parallel with experiments using RNA interference (RNAi) and chemical inhibition. RESULTS: A decrease in glycogen content was observed when AKT was chemically inhibited by 10-DEBC treatment, while GSK3 inhibition by alsterpaullone had an opposing effect. RmAKT ORF is 1584-bp long and encodes a polypeptide chain of 60.1 kDa. Phylogenetic and sequence analyses showed significant differences between vertebrate and tick AKTs. Either AKT or GSK3 knocked down cells showed a 70% reduction in target transcript levels, but decrease in AKT also reduced glycogen content, cell viability and altered cell membrane permeability. However, the GSK3 reduction promoted an increase in glycogen content. Additionally, either GSK3 inhibition or gene silencing had a protective effect on BME26 viability after exposure to ultraviolet radiation. R. microplus AKT and GSK3 were widely expressed during embryo development. Taken together, our data support an antagonistic role for AKT and GSK3, and strongly suggest that such a signaling axis is conserved in tick embryos, with AKT located upstream of GSK3. GENERAL SIGNIFICANCE: The AKT/GSK3 axis is conserved in tick in a way that integrates glycogen metabolism and cell survival, and exhibits phylogenic differences that could be important for the development of novel control methods.


Assuntos
Proteínas de Artrópodes/genética , Quinase 3 da Glicogênio Sintase/genética , Glicogênio/metabolismo , Glicogenólise/genética , Proteínas Proto-Oncogênicas c-akt/genética , Rhipicephalus/genética , Animais , Proteínas de Artrópodes/antagonistas & inibidores , Proteínas de Artrópodes/metabolismo , Benzazepinas/farmacologia , Linhagem Celular , Permeabilidade da Membrana Celular/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Clonagem Molecular , Embrião não Mamífero , Regulação da Expressão Gênica/efeitos da radiação , Glicogênio/genética , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogenólise/efeitos da radiação , Indóis/farmacologia , Fases de Leitura Aberta , Oxazinas/farmacologia , Filogenia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , Rhipicephalus/embriologia , Rhipicephalus/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais/efeitos da radiação , Especificidade da Espécie , Raios Ultravioleta
3.
Animals (Basel) ; 13(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37370541

RESUMO

Recent advancements in molecular biology, particularly regarding massively parallel sequencing technologies, have enabled scientists to gain more insight into the physiology of ticks. While there has been progress in identifying tick proteins and the pathways they are involved in, the specificities of tick-host interaction at the molecular level are not yet fully understood. Indeed, the development of effective commercial tick vaccines has been slower than expected. While omics studies have pointed to some potential vaccine immunogens, selecting suitable antigens for a multi-antigenic vaccine is very complex due to the participation of redundant molecules in biological pathways. The expansion of ticks and their pathogens into new territories and exposure to new hosts makes it necessary to evaluate vaccine efficacy in unusual and non-domestic host species. This situation makes ticks and tick-borne diseases an increasing threat to animal and human health globally, demanding an urgent availability of vaccines against multiple tick species and their pathogens. This review discusses the challenges and advancements in the search for universal tick vaccines, including promising new antigen candidates, and indicates future directions in this crucial research field.

4.
Ticks Tick Borne Dis ; 11(6): 101547, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32993953

RESUMO

Ferritin 2 (FER2) is an iron storage protein, which has been shown to be critical for iron homeostasis during blood feeding and reproduction in ticks and is therefore suitable as a component for anti-tick vaccines. In this study, we identified the FER2 of Ixodes persulcatus, a major vector for zoonotic diseases such as Lyme borreliosis and tick-borne relapsing fever in Japan, and investigated its functions. Ixodes persulcatus-derived ferritin 2 (Ip-FER2) showed concentration-dependent iron-binding ability and high amino acid conservation, consistent with FER2s of other tick species. Vaccines containing the recombinant Ip-FER2 elicited a significant reduction of the engorgement weight of adult I. persulcatus. Interestingly, the reduction of engorgement weight was also observed in Ixodes ovatus, a sympatric species of I. persulcatus. In silico analyses of FER2 sequences of I. persulcatus and other ticks showed a greater similarity with I. scapularis and I. ricinus and lesser similarity with Hyalomma anatolicum, Haemaphysalis longicornis, Rhipicephalus microplus, and R. appendiculatus. Moreover, it was observed that the tick FER2 sequences possess conserved regions within the primary structures, and in silico epitope mapping analysis revealed that antigenic regions were also conserved, particularly among Ixodes spp ticks. In conclusion, the data support further protective tick vaccination applications using the Ip-FER2 antigens identified herein.


Assuntos
Proteínas de Artrópodes/genética , Ferritinas/genética , Ixodes/genética , Vacinas/genética , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/metabolismo , Sequência de Bases , Ferritinas/química , Ferritinas/metabolismo , Ixodes/metabolismo , Filogenia , Alinhamento de Sequência , Vacinas/análise
5.
Ticks Tick Borne Dis ; 11(3): 101378, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31982372

RESUMO

Rhipicephalus appendiculatus, the brown ear tick, is an important disease vector of livestock in eastern, central and southern Africa. Rhipicephalus appendiculatus acaricide resistance requires the search for alternative methods for its control. Cystatins constitute a superfamily of cysteine peptidase inhibitors vital for tick blood feeding and development. These inhibitors were proposed as antigens in anti-tick vaccines. In this work, we applied structural and biochemical approaches to characterize a new cystatin named R. appendiculatus cystatin 2a (Racys2a). Structural modeling showed that this new protein possesses characteristic type 2 cystatin motifs, besides conservation of other structural patterns along the protein. Peptidase inhibitory assays with recombinant Racys2a showed modulation of tick and host cathepsins involved in blood digestion and immune system responses, respectively. A heterologous tick challenge with R. appendiculatus in rabbits immunized with recombinant Rhipicephalus microplus cystatin 2c (rBmcys2c) was performed to determine cross-reactivity. Histological staining showed that rBmcys2c vaccination caused damage to the gut, salivary gland and ovary tissues in R. appendiculatus. Furthermore, cystatin vaccine reduced the number of fully engorged adult females in 11.5 %. Consequently, strategies to increase the protection rate are necessary, including the selection of two or more antigens to compose a vaccine cocktail.


Assuntos
Proteínas de Artrópodes/genética , Rhipicephalus/genética , Cistatinas Salivares/genética , Vacinas/genética , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/metabolismo , Feminino , Filogenia , Coelhos , Rhipicephalus/metabolismo , Cistatinas Salivares/química , Cistatinas Salivares/metabolismo , Alinhamento de Sequência , Vacinas/química , Vacinas/metabolismo
6.
Adv Bioinformatics ; 2018: 7963401, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29849611

RESUMO

Ticks cause approximately $17-19 billion economic losses to the livestock industry globally. Development of recombinant antitick vaccine is greatly hindered by insufficient knowledge and understanding of proteins expressed by ticks. Ticks secrete immunosuppressant proteins that modulate the host's immune system during blood feeding; these molecules could be a target for antivector vaccine development. Recombinant p36, a 36 kDa immunosuppressor from the saliva of female Dermacentor andersoni, suppresses T-lymphocytes proliferation in vitro. To identify potential unique structural and dynamic properties responsible for the immunosuppressive function of p36 proteins, this study utilized bioinformatic tool to characterize and model structure of D. andersoni p36 protein. Evaluation of p36 protein family as suitable vaccine antigens predicted a p36 homolog in Rhipicephalus appendiculatus, the tick vector of East Coast fever, with an antigenicity score of 0.7701 that compares well with that of Bm86 (0.7681), the protein antigen that constitute commercial tick vaccine Tickgard™. Ab initio modeling of the D. andersoni p36 protein yielded a 3D structure that predicted conserved antigenic region, which has potential of binding immunomodulating ligands including glycerol and lactose, found located within exposed loop, suggesting a likely role in immunosuppressive function of tick p36 proteins. Laboratory confirmation of these preliminary results is necessary in future studies.

7.
Ticks Tick Borne Dis ; 9(1): 72-81, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29054547

RESUMO

The vitellogenin receptor (VgR), which belongs to the low-density lipoprotein receptors (LDLR) family, regulates the absorption of yolk protein accumulated in developing oocytes during oogenesis. In the present study, the full sequence of Rhipicephalus microplus VgR (RmVgR) and the partial sequence of Rhipicephalus appendiculatus VgR (RaVgR) ORF were determined and cloned. The RmVgR amino acid sequence contains the five highly conserved structural motifs characteristic of LDLR superfamily members, the same overall structure as observed in other species. Phylogenetic analysis separated VgRs in two major groups, corresponding to receptors from acarines and insects. Consistent with observations from other arthropods, RmVgR was specifically expressed in the ovarian tissue and its peak of expression occurs in females that are detaching from the host. Silencing with RmVgR dsRNA reduced VgR expression, which resulted in reduced fertility, evidenced by a decrease in the number of larvae. The present study confirms RmVgR is a specific receptor involved in yolk protein uptake and oocyte maturation in R. microplus, playing an important role in tick reproduction.


Assuntos
Proteínas de Artrópodes/genética , Proteínas do Ovo/genética , Oogênese/genética , Receptores de Superfície Celular/genética , Rhipicephalus/genética , Transcriptoma , Animais , Proteínas de Artrópodes/metabolismo , Proteínas do Ovo/metabolismo , Feminino , Larva/genética , Larva/crescimento & desenvolvimento , Larva/fisiologia , Óvulo/crescimento & desenvolvimento , Óvulo/fisiologia , Receptores de Superfície Celular/metabolismo , Rhipicephalus/crescimento & desenvolvimento , Rhipicephalus/fisiologia , Análise de Sequência de Proteína
8.
Vaccine ; 35(48 Pt B): 6649-6656, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29056423

RESUMO

The ticks Rhipicephalus appendiculatus and Rhipicephalus sanguineus are the main vectors of Theileria parva and Babesia spp. in cattle and dogs, respectively. Due to their impact in veterinary care and industry, improved methods against R. appendiculatus and R. sanguineus parasitism are under development, including vaccines. We have previously demonstrated the induction of a cross-protective humoral response against Rhipicephalus microplus following vaccination with recombinant glutathione S-transferase from Haemaphysalis longicornis tick (rGST-Hl), suggesting that this protein could control tick infestations. In the present work, we investigated the effect of rGST-Hl vaccine against R. appendiculatus and R. sanguineus infestation in rabbits. In silico analysis revealed that GST from H. longicornis, R. appendiculatus and R. sanguineus have >80% protein sequence similarity, and multiple conserved antigenic sites. After the second vaccine dose, rGST-Hl-immunized rabbits showed elevated antibody levels which persisted until the end of experiment (75 and 60 days for R. appendiculatus and R. sanguineus, respectively). Western blot assays demonstrated cross-reactivity between anti-rGST-Hl antibodies and native R. appendiculatus and R. sanguineus GST extracts from ticks at different life stages. Vaccination with rGST-Hl decreased the number, weight, and fertility of engorged R. appendiculatus adults, leading to an overall vaccine efficacy of 67%. Interestingly, histological analysis of organ morphology showed damage to salivary glands and ovaries of R. appendiculatus adult females fed on vaccinated animals. In contrast, rGST-Hl vaccination did not affect R. appendiculatus nymphs, and it was ineffective against R. sanguineus across the stages of nymph and adult. Taken together, our results show the potential application of rGST-Hl as an antigen in anti-tick vaccine development, however indicating a broad difference in efficacy among tick species.


Assuntos
Glutationa Transferase/genética , Glutationa Transferase/imunologia , Rhipicephalus sanguineus/imunologia , Rhipicephalus/imunologia , Infestações por Carrapato/prevenção & controle , Vacinas Sintéticas/imunologia , Animais , Antígenos/imunologia , Bovinos , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/parasitologia , Doenças dos Bovinos/prevenção & controle , Simulação por Computador , Feminino , Glutationa Transferase/administração & dosagem , Ovário/patologia , Coelhos , Glândulas Salivares/patologia , Alinhamento de Sequência , Controle de Ácaros e Carrapatos/métodos , Infestações por Carrapato/imunologia , Vacinação , Vacinas Sintéticas/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA