Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Appl Physiol ; 117(3): 397-407, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28154974

RESUMO

It is unknown whether aging or exercise training affect the dynamics of arteriolar vasoconstriction. PURPOSE: We hypothesized that old age will slow, and exercise training will speed, the dynamics of skeletal muscle arteriolar vasoconstriction in resistance vessels of aged rats. METHOD: Young (6 month old) and aged (24 month old) male Fischer-344 rats were assigned to sedentary (Sed: n = 6/age group) or exercise-trained (ET: n = 5 aged and 6 young; via treadmill running for 10-12 weeks) groups. After completion of training, arterioles from the red portion of the gastrocnemius muscle were removed, cannulated, and exposed to 10-4 M norepinephrine (NE) or 20 mM caffeine. Changes in luminal diameter were recorded for analysis of constrictor dynamics. RESULT: Old age blunted all kinetic parameters (i.e., time delay, time constant) resulting in vasoconstriction taking ~3 times as long to reach a steady state (SS) versus younger counterparts for NE (aged-sed: 15.6 ± 6.0 versus young-sed: 4.6 ± 0.5 s; P < 0.05) with a similar time course to caffeine. Exercise training resulted in a similar time to SS between age groups for NE (aged-ET: 6.8 ± 1.6 versus young-ET: 7.0 ± 0.6 s) and caffeine (aged-ET: 7.8 ± 0.6 versus young-ET: 8.6 ± 1.0 s). CONCLUSION: The results of this study demonstrate that aging blunts the rate of vasoconstriction in skeletal muscle resistance vessels to the sympathetic neurotransmitter NE due, in part, to an attenuated rate of contraction from intracellular calcium release. Further, exercise training speeds the dynamics of constriction to both NE and caffeine with old age.


Assuntos
Envelhecimento/fisiologia , Músculo Esquelético/fisiologia , Condicionamento Físico Animal , Vasoconstrição , Animais , Arteríolas/crescimento & desenvolvimento , Arteríolas/fisiologia , Masculino , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/crescimento & desenvolvimento , Ratos , Ratos Endogâmicos F344
2.
Am J Cancer Res ; 7(12): 2566-2576, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29312809

RESUMO

Exercise capacity is reduced in prostate cancer patients concurrently treated with androgen deprivation therapy compared to healthy counterparts. We tested the hypothesis that prostate cancer independently reduces endurance exercise capacity in a preclinical orthotopic prostate tumor model. Male Copenhagen rats performed an initial treadmill running test to exhaustion. The rats' prostates were subsequently injected with either prostate tumor cells (R-3327 AT-1, tumor bearing, n=9) or vehicle control (sham, n=9) and the treadmill tests were repeated four and eight weeks post-surgery. Left ventricle contractility (LV Δpressure/Δtime) was subsequently measured under anesthesia and the heart and select hindlimb muscles were dissected and weighed. Initial times to exhaustion were not different between groups (sham: 28.24±1.26, tumor bearing: 28.63±2.49 min, P=0.90). Time to exhaustion eight weeks post-surgery was reduced compared to initial values for both groups but was significantly lower in the tumor bearing (13.25±1.44 min) versus the sham (21.17±1.87 min, P<0.01) group. Within the tumor bearing group, LV Δpressure/Δtime was significantly negatively correlated with tumor mass (-0.71, P<0.05). Body mass at eight weeks post-surgery was not different between groups (P=0.26) but LV mass (↓17%, P<0.01), as well as the mass of select hindlimb skeletal muscles, was significantly lower in the tumor bearing versus sham group. Within the tumor bearing group, LV muscle mass was significantly negatively correlated with prostate tumor mass (r=-0.85, P<0.01). Prostate cancer reduced endurance exercise capacity in the rat and reductions in cardiac function and mass and skeletal muscle mass may have played an important role in this impairment.

3.
J Appl Physiol (1985) ; 121(1): 15-24, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27125846

RESUMO

Given the critical role of tumor O2 delivery in patient prognosis and the rise in preclinical exercise oncology studies, we investigated tumor and host tissue blood flow at rest and during exercise as well as vascular reactivity using a rat prostate cancer model grown in two transplantation sites. In male COP/CrCrl rats, blood flow (via radiolabeled microspheres) to prostate tumors [R3327-MatLyLu cells injected in the left flank (ectopic) or ventral prostate (orthotopic)] and host tissue was measured at rest and during a bout of mild-intensity exercise. α-Adrenergic vasoconstriction to norepinephrine (NE: 10(-9) to 10(-4) M) was determined in arterioles perforating the tumors and host tissue. To determine host tissue exercise hyperemia in healthy tissue, a sham-operated group was included. Blood flow was lower at rest and during exercise in ectopic tumors and host tissue (subcutaneous adipose) vs. the orthotopic tumor and host tissue (prostate). During exercise, blood flow to the ectopic tumor significantly decreased by 25 ± 5% (SE), whereas flow to the orthotopic tumor increased by 181 ± 30%. Maximal vasoconstriction to NE was not different between arterioles from either tumor location. However, there was a significantly higher peak vasoconstriction to NE in subcutaneous adipose arterioles (92 ± 7%) vs. prostate arterioles (55 ± 7%). Establishment of the tumor did not alter host tissue blood flow from either location at rest or during exercise. These data demonstrate that blood flow in tumors is dependent on host tissue hemodynamics and that the location of the tumor may critically affect how exercise impacts the tumor microenvironment and treatment outcomes.


Assuntos
Hemodinâmica/fisiologia , Condicionamento Físico Animal/fisiologia , Neoplasias da Próstata/fisiopatologia , Fluxo Sanguíneo Regional/fisiologia , Animais , Arteríolas/efeitos dos fármacos , Arteríolas/fisiologia , Linhagem Celular Tumoral , Hiperemia/fisiopatologia , Masculino , Norepinefrina/farmacologia , Ratos , Descanso/fisiologia , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/fisiologia , Vasoconstritores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA