Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Eat Disord ; 53(5): 432-446, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32275093

RESUMO

OBJECTIVE: Both environmental and genetic factors are known to contribute to the development of anorexia nervosa (AN), but the exact etiology remains poorly understood. Herein, we studied the transcriptional regulation of the endocannabinoid system, an interesting target for body weight maintenance and the control of food intake and energy balance. METHOD: We used two well-characterized animal models of AN: (a) the activity-based anorexia (ABA) model in which rats, housed with running wheels and subjected to daily food restriction, show reductions in body weight and increase in physical activity; (b) the genetic anx/anx mouse displaying the core features of AN: low food intake and emaciation. RESULTS: Among the evaluated endocannabinoid system components, we observed a selective and significant down-regulation of the gene encoding for the type 1 cannabinoid receptor (Cnr1) in ABA rats' hypothalamus and nucleus accumbens and, in the latter area, a consistent, significant and correlated increase in DNA methylation at the gene promoter. No changes were evident in the anx/anx mice except for a down-regulation of Cnr1, in the prefrontal cortex. DISCUSSION: Our findings support a possible role for Cnr1 in the ABA animal model of AN. In particular, its regulation in the nucleus accumbens appears to be triggered by environmental cues due to the consistent epigenetic modulation of the promoter. These data warrant further studies on Cnr1 regulation as a possible target for treatment of AN.

2.
Int J Eat Disord ; 52(11): 1251-1262, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31456239

RESUMO

OBJECTIVE: Despite the growing knowledge on the functional relationship between an altered endocannabinoid (eCB) system and development of anorexia nervosa (AN), to date no studies have investigated the central eCB tone in the activity-based anorexia (ABA) model that reproduces key aspects of human AN. METHOD: We measured levels of two major eCBs, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), those of two eCB-related lipids, oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), and the cannabinoid type-1 receptor (CB1R) density in the brain of female ABA rats, focusing on areas involved in homeostatic and rewarding-related regulation of feeding behavior (i.e., prefrontal cortex, nucleus accumbens, caudato putamen, amygdala, hippocampus and hypothalamus). Analysis was carried out also at the end of recovery from the ABA condition. RESULTS: At the end of the ABA induction phase, 2-AG was significantly decreased in ABA rats in different brain areas but not in the caudato putamen. No changes were detected in AEA levels in any region, whereas the levels of OEA and PEA were decreased exclusively in the hippocampus and hypothalamus. Furthermore, CB1R density was decreased in the dentate gyrus of hippocampus and in the lateral hypothalamus. After recovery, both 2-AG levels and CB1R density were partially normalized in some areas. In contrast, AEA levels became markedly reduced in all the analyzed areas. DISCUSSION: These data demonstrate an altered brain eCB tone in ABA rats, further supporting the involvement of an impaired eCB system in AN pathophysiology that may contribute to the maintenance of some symptomatic aspects of the disease.


Assuntos
Anorexia Nervosa/induzido quimicamente , Encéfalo/efeitos dos fármacos , Endocanabinoides/efeitos adversos , Animais , Feminino , Humanos , Ratos , Ratos Sprague-Dawley
3.
Horm Behav ; 87: 35-46, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27769760

RESUMO

Exposure of female rats to estradiol during the perinatal period has profound effects on GABAergic neurotransmission that are crucial to establish sexually dimorphic brain characteristics. We previously showed that neonatal ß-estradiol 3-benzoate (EB) treatment decreases brain concentrations of the neurosteroid allopregnanolone, a potent positive modulator of extrasynaptic GABAA receptors (GABAAR). We thus evaluated whether neonatal EB treatment affects GABAAR expression and function in the hippocampus of adult female rats. Neonatal EB administration increased the expression of extrasynaptic α4/δ subunit-containing GABAARs and the modulatory action of THIP on tonic currents mediated by these receptors. The same treatment decreased the expression of synaptic α1/α4/γ2 subunit-containing receptors, as well as phasic currents. These effects of neonatal EB treatment are not related to ambient allopregnanolone concentrations per se, given that vehicle-treated rats in diestrus, which have opposite neurosteroid levels than EB-treated rats, show similar changes in GABAARs. Rather, these changes may represent a compensatory mechanism to counteract the long-term reduction in allopregnanolone concentrations, induced by neonatal EB. Given that both α4/δ receptors and allopregnanolone are involved in memory consolidation, we evaluated whether neonatal EB treatment alters performance in the Morris water maze test during adulthood. Neonatal EB treatment decreased the latency and the cumulative search error to reach the platform, as well as thigmotaxis, suggesting improved learning, and also enhanced memory performance during the probe trial. These enduring changes in GABAAR plasticity may be relevant for the regulation of neuronal excitability in the hippocampus and for the etiology of psychiatric disorders that originate in development and show sex differences.


Assuntos
Estradiol/farmacologia , Receptores de GABA-A/metabolismo , Receptores de GABA-A/fisiologia , Aprendizagem Espacial/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Estradiol/análogos & derivados , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Neurotransmissores/farmacologia , Pregnanolona/farmacologia , Ratos , Ratos Sprague-Dawley , Caracteres Sexuais , Transmissão Sináptica/efeitos dos fármacos
4.
Front Aging Neurosci ; 16: 1323563, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38440100

RESUMO

Introduction: The goal of this study is to explore the pharmacological potential of the amyloid-reducing vasodilator fasudil, a selective Ras homolog (Rho)-associated kinases (ROCK) inhibitor, in the P301S tau transgenic mouse model (Line PS19) of neurodegenerative tauopathy and Alzheimer's disease (AD). Methods: We used LC-MS/MS, ELISA and bioinformatic approaches to investigate the effect of treatment with fasudil on the brain proteomic profile in PS19 tau transgenic mice. We also explored the efficacy of fasudil in reducing tau phosphorylation, and the potential beneficial and/or toxic effects of its administration in mice. Results: Proteomic profiling of mice brains exposed to fasudil revealed the activation of the mitochondrial tricarboxylic acid (TCA) cycle and blood-brain barrier (BBB) gap junction metabolic pathways. We also observed a significant negative correlation between the brain levels of phosphorylated tau (pTau) at residue 396 and both fasudil and its metabolite hydroxyfasudil. Conclusions: Our results provide evidence on the activation of proteins and pathways related to mitochondria and BBB functions by fasudil treatment and support its further development and therapeutic potential for AD.

5.
Biomed Pharmacother ; 168: 115756, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37865996

RESUMO

BACKGROUND: Hypertension and hyperlipidemia are considered risk factors for Alzheimer's disease (AD) and other related dementias. Clinically approved medications typically prescribed to manage these conditions have shown an association with reduced risk of developing AD and could be explored as potential repurposed therapeutics. OBJECTIVE: We aimed to explore the effects of the pharmacological treatment with angiotensin-converting enzyme inhibitors (ACEI) and statins (STAT) on AD-related neuropathology and the potential benefits of their concurrent use. METHODS: We investigated the effect of ACEI, STAT or combination of both by exploring the transcriptomic, proteomic and tau pathology profiles after treatment in both human patients and in P301S transgenic mice (PS19) modeling tauopathies and AD. We performed bioinformatic analysis of enriched pathways after treatment. RESULTS: Proteomics and transcriptomics analysis revealed proteins and genes whose expression is significantly changed in subjects receiving treatment with ACEI, STAT or combined drugs. In mice, treatment with the ACEI lisinopril significantly decreased brain levels of total tau (Tau) and phosphorylated tau (pTau)-181, while the STAT atorvastatin significantly reduced the levels of pTau-396. The combined therapy with lisinopril and atorvastatin significantly decreased Tau. Moreover, brain levels of lisinopril were negatively correlated with Tau. Among the others, CD200, ADAM22, BCAN and NCAM1 were significantly affected by treatments in both human subjects and transgenic mice. CONCLUSIONS: Our findings provide significant information that may guide future investigation of the potential use of ACEI, STAT, or the combination of the two drug classes as repurposed therapies or preventive strategies for AD and other neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Inibidores da Enzima Conversora de Angiotensina , Inibidores de Hidroximetilglutaril-CoA Redutases , Animais , Humanos , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Atorvastatina , Modelos Animais de Doenças , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Lisinopril , Camundongos Transgênicos , Proteômica , Proteínas tau/metabolismo
6.
Behav Brain Res ; 444: 114374, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36863461

RESUMO

Compelling data support altered dopamine (DA) and serotonin (5-HT) signaling in anorexia nervosa (AN). However, their exact role in the etiopathogenesis of AN has yet to be elucidated. Here, we evaluated the corticolimbic brain levels of DA and 5-HT in the induction and recovery phases of the activity-based anorexia (ABA) model of AN. We exposed female rats to the ABA paradigm and measured the levels of DA, 5-HT, the metabolites 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 5-hydroxyindoleacetic acid (5-HIAA), and the dopaminergic type 2 (D2) receptors density in feeding- and reward-implicated brain regions (i.e., cerebral cortex, Cx; prefrontal cortex, PFC; caudate putamen, CPu; nucleus accumbens, NAcc; amygdala, Amy; hypothalamus, Hyp; hippocampus, Hipp). DA levels were significantly increased in the Cx, PFC and NAcc, while 5-HT was significantly enhanced in the NAcc and Hipp of ABA rats. Following recovery, DA was still elevated in the NAcc, while 5-HT was increased in the Hyp of recovered ABA rats. DA and 5-HT turnover were impaired at both ABA induction and recovery. D2 receptors density was increased in the NAcc shell. These results provide further proof of the impairment of the dopaminergic and serotoninergic systems in the brain of ABA rats and support the knowledge of the involvement of these two important neurotransmitter systems in the development and progression of AN. Thus, providing new insights on the corticolimbic regions involved in the monoamine dysregulations in the ABA model of AN.


Assuntos
Dopamina , Serotonina , Ratos , Feminino , Animais , Dopamina/metabolismo , Serotonina/metabolismo , Encéfalo/metabolismo , Ácido Homovanílico , Núcleo Accumbens/metabolismo , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Ácido Hidroxi-Indolacético/metabolismo
7.
J Alzheimers Dis ; 96(4): 1695-1709, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38007655

RESUMO

BACKGROUND: Alzheimer's disease (AD) is the most predominant form of dementia. Rho-associated coiled coil kinase (ROCK) inhibitor, fasudil, is one of the candidate drugs against the AD progression. OBJECTIVE: We aimed to investigate possible changes of AD associated markers in three-dimensional neuro-spheroids (3D neuro-spheroids) generated from induced pluripotent stem cells derived from AD patients or healthy control subjects (HC) and to determine the impact of pharmacological intervention with the ROCK inhibitor fasudil. METHODS: We treated 3D neuro-spheroids with fasudil and tested the possible effect on AD markers by ELISA, transcriptomic and proteomic analyses. RESULTS: Transcriptomic analysis revealed a reduction in the expression of AKT serine/threonine-protein kinase 1 (AKT1) in AD neuro-spheroids, compared to HC. This decrease was reverted in the presence of fasudil. Proteomic analysis showed up- and down-regulation of proteins related to AKT pathway in fasudil-treated neuro-spheroids. We found an evident increase of phosphorylated tau at four different residues (pTau181, 202, 231, and 396) in AD compared to HC-derived neuro-spheroids. This was accompanied by a decrease of secreted clusterin (clu) and an increase of intracellular clu levels in AD patient-derived neuro-spheroids. Increases of phosphorylated tau in AD patient-derived neuro-spheroids were suppressed in the presence of fasudil. CONCLUSIONS: Fasudil modulates clu protein levels and enhances AKT1 that results in the suppression of AD associated tau phosphorylation.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Quinases Associadas a rho , Proteínas Proto-Oncogênicas c-akt , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteômica , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
8.
Nutrients ; 12(6)2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32486207

RESUMO

BACKGROUND: Binge eating disorder (BED) is characterized by recurrent binge eating episodes consisting of rapid consumption of excessive amounts of highly palatable, energy-dense food within discrete periods of time. The aim of this study was to test the consummatory, food microstructural, and metabolic effects of a one hour limited access to either a high-sucrose diet (HSD) or a high-fat diet (HFD) in an operant rat model of binge-like eating. METHODS: Female rats were subject to a binge-like eating procedure in which a HSD, a HFD, or a standard chow diet were provided in a fixed ratio 1 (FR1) operant schedule of reinforcement. RESULTS: Limiting access to either a HSD or a HFD promoted binge-like eating as compared to the control chow diet. However, binge-like eating of HSD, but not HFD, was based on a true increase in the amount of food consumed, an increased eating rate, and a decrease in the intake of the home-cage standard chow, altogether suggesting an increase in palatability. Moreover, while HSD rats consumed overall less energy than HFD rats, the former were more energy efficient and gained more body weight than the latter. CONCLUSIONS: These results provide information on how the quality of food can deeply influence the behavioral and metabolic outcomes of binge-like eating.


Assuntos
Bulimia/metabolismo , Dieta Hiperlipídica/efeitos adversos , Sacarose Alimentar/efeitos adversos , Sacarose Alimentar/metabolismo , Comportamento Alimentar/efeitos dos fármacos , Animais , Transtorno da Compulsão Alimentar , Peso Corporal , Modelos Animais de Doenças , Ingestão de Alimentos , Feminino , Ratos
9.
Artigo em Inglês | MEDLINE | ID: mdl-31778792

RESUMO

Increasing evidence underline the role of inflammation in the behavioral, emotional and cognitive dysregulations displayed in anorexia nervosa (AN). Among the inflammatory mediators acting at both peripheral and central levels, growing attention receives a class of lipids derived from arachidonic acid (AA), called eicosanoids (eiCs), which exert a complex, multifaceted role in a wide range of neuroinflammatory processes, peripheral inflammation, and generally in immune system function. To date, little is known about their possible involvement in the neurobiological underpinnings of AN. The present study evaluated whether the activity-based model of AN (ABA) may alter AA-metabolic pathways by changing the levels of AA-derived eiCs in specific brain areas implicated in the development of the typical anorexic-like phenotype, i.e. in prefrontal cortex, cerebral cortex, nucleus accumbens, caudate putamen, amygdala, hippocampus, hypothalamus and cerebellum. Our results point to brain region-specific alterations of the cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 epoxygenase (CYP) metabolic pathways rendering altered levels of AA-derived eiCs (i.e. prostaglandins, thromboxanes and hydroxyeicosatetraenoic acids) in response to induction of and recovery from the ABA condition. These changes, supported by altered messenger RNA (mRNA) levels of genes coding for enzymes involved in eiCs-related methabolic pathways (i.e., PLA2, COX-2, 5-LOX and 15-LOX), underlie a widespread brain dysregulation of pro- and anti-inflammatory eiC-mediated processes in the ABA model of AN. These data suggest the importance of eiCs signaling within corticolimbic areas in regulating key neurobehavioral functions and highlight eiCs as biomarker candidates for monitoring the onset and development of AN, and/or as possible targets for pharmacological management.


Assuntos
Anorexia Nervosa/patologia , Ácido Araquidônico/análise , Encéfalo/patologia , Eicosanoides/análise , Inflamação/patologia , Animais , Anorexia Nervosa/metabolismo , Ácido Araquidônico/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Eicosanoides/metabolismo , Feminino , Inflamação/metabolismo , Redes e Vias Metabólicas , Ratos Sprague-Dawley
10.
Psychiatr Genet ; 29(5): 191-199, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31464999

RESUMO

In the past decades, the improving knowledge of genes implicated in the pathogenesis of psychiatric disorders together with the advancements in genetic engineering has led to the creation of mice in which one or more genes are inactivated or 'knocked out'. Knockout mice are extensively used to better investigate the molecular and cellular mechanisms underlying these diseases as well as the biological role of specific genes. Moreover, they are also useful tools for developing new therapeutic strategies. The success of using knockout mice is possible due to availability of several models used to mimic some clinical manifestations reported in psychiatric patients. In the present review, we will give an update of the most used gene knockout models in the field of psychiatric disorders including depression, anxiety, and obsessive-compulsive disorder.


Assuntos
Transtornos de Ansiedade/genética , Transtorno Depressivo/genética , Camundongos Knockout , Transtorno Obsessivo-Compulsivo/genética , Animais , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Humanos , Camundongos
11.
Methods Mol Biol ; 2011: 297-314, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31273706

RESUMO

Eating disorders (EDs) include a range of chronic and disabling pathologies characterized by persistent maladaptive eating habits and/or behaviors aimed at controlling body shape and size, with important consequences on physical health. Different animal models of EDs have been developed to investigate pharmacological, environmental, and genetic determinants that contribute to the development and maintenance of these disorders as well as for the identification of potential therapeutic targets. In this chapter, we will provide an overview of the most useful animal models of EDs, focusing mainly on those used to study anorexia nervosa and binge eating disorder.


Assuntos
Modelos Animais de Doenças , Suscetibilidade a Doenças , Transtornos da Alimentação e da Ingestão de Alimentos/etiologia , Ração Animal , Animais , Comportamento Alimentar , Transtornos da Alimentação e da Ingestão de Alimentos/diagnóstico , Feminino , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA