Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 214(Pt 4): 114068, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35973459

RESUMO

Kitchen-waste-derived biochar (KBC) was produced by thermal treatment at 400 °C, and a series of KBC/BiOX (X = Br, Cl) photocatalysts were developed using ultrasonication and solvothermal treatment. The as-prepared photocatalysts were characterized by several tests and investigated by photocatalytic reactions towards methyl orange (MO) and tetracycline (TC). The best photocatalysts, 0.15KBC/BiOBr and 0.15KBC/BiOCl separately achieved complete MO photodegradation in 20 min and 35 min. Further study confirmed that 0.15KBC/BiOBr and 0.15KBC/BiOCl possessed excellent photocatalytic efficiency that was 17.9 and 14.8 times higher than BiOBr and BiOCl, respectively. In addition, 0.15KBC/BiOX showed higher activity removal of TC than pure BiOX in 60 min. Notably, 0.15KBC/BiOX maintained a reproducible high photocatalytic efficiency after five recycles. Estimated band gap energy for 0.15KBC/BiOBr (2.40 eV) and 0.15KBC/BiOCl (3.00 eV) was considerably lower than that of BiOBr (2.73 eV) and BiOCl (3.30 eV), indicating a delocalized state was created when forming electronic pathways on the interface. Besides, visible-light harvesting of photocatalysts got promoted by the modification of KBC. Active species trapping experiments and electron paramagnetic resonance (EPR) tests illustrated that photogenerated holes were the principal active species, while ∙OH was involved in the reaction. The successful synthesis of 0.15KBC/BiOX catalyst provided a new approach on simultaneously degrading organic contaminants in water and disposing of excessive kitchen waste.


Assuntos
Carvão Vegetal , Nanocompostos , Catálise , Fotólise , Tetraciclina
2.
Nanomaterials (Basel) ; 10(5)2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443395

RESUMO

Film-forming techniques and the control of heat release in micro-energetic chips or devices create challenges and bottlenecks for the utilization of energy. In this study, promising nano-Al/MoO3 metastable intermolecular composite (MIC) chips with an uniform distribution of particles were firstly designed via a convenient and high-efficiency electrophoretic deposition (EPD) technique at room temperature and under ambient pressure conditions. The mixture of isopropanol, polyethyleneimine, and benzoic acid proved to be an optimized dispersing agent for EPD. The kinetics of EPD for oxidants (Al) and reductants (MoO3) were systematically investigated, which contributed to adjusting the equivalence ratio of targeted energetic chips after changing the EPD dynamic behaviors of Al and MoO3 in suspension. In addition, the obtained nano-Al/MoO3 MIC energetic chips showed excellent heat-release performance with a high heat release of ca. 3340 J/g, and were successfully ignited with a dazzling flame recorded by a high-speed camera. Moreover, the fabrication method here is fully compatible with a micro-electromechanical system (MEMS), which suggests promising potential in designing and developing other MIC energetic chips or devices for micro-ignition/propulsion applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA