Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 11: 1218099, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397966

RESUMO

The use of environmentally damaging petrochemical feedstocks can be displaced by fermentation processes based on engineered microbial chassis that recycle biomass-derived carbon into chemicals and fuels. The stable retention of introduced genes, designed to extend product range and/or increase productivity, is essential. Accordingly, we have created multiply marked auxotrophic strains of Clostridium acetobutylicum that provide distinct loci (pyrE, argH, purD, pheA) at which heterologous genes can be rapidly integrated using allele-coupled exchange (ACE). For each locus, ACE-mediated insertion is conveniently selected on the basis of the restoration of prototrophy on minimal media. The Clostridioides difficile gene (tcdR) encoding an orthogonal sigma factor (TcdR) was integrated at the pyrE locus under the control of the lactose-inducible, bgaR::PbgaL promoter to allow the simultaneous control of genes/operons inserted at other disparate loci (purD and pheA) that had been placed under the control of the PtcdB promoter. In control experiments, dose-dependent expression of a catP reporter gene was observed with increasing lactose concentration. At the highest doses tested (10 mM) the level of expression was over 10-fold higher than if catP was placed directly under the control of bgaR::PbgaL and over 2-fold greater than achieved using the strong Pfdx promoter of the Clostridium sporogenes ferredoxin gene. The utility of the system was demonstrated in the production of isopropanol by the C. acetobutylicum strain carrying an integrated copy of tcdR following the insertion of a synthetic acetone operon (ctfA/B, adc) at the purD locus and a gene (sadh) encoding a secondary dehydrogenase at pheA. Lactose induction (10 mM) resulted in the production of 4.4 g/L isopropanol and 19.8 g/L Isopropanol-Butanol-Ethanol mixture.

2.
J Mol Diagn ; 25(7): 513-523, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37355278

RESUMO

To achieve the global efforts to end tuberculosis, affordable diagnostics suitable for true point-of-care implementation are required to reach the missing millions. In addition, diagnostics with increased sensitivity and expanded drug susceptibility testing are needed to address drug resistance and to diagnose low-bacterial burden cases. The laboratory-on-a-chip technology described herein used dielectrophoresis to selectively isolate Mycobacterium tuberculosis from sputum samples, purifying the bacterial population ahead of molecular confirmation by multiplex real-time quantitative PCR. After optimization using a panel of 50 characterized sputum samples, the performance of the prototype was assessed against the current gold standards, screening 100 blinded sputum samples using characterized and biobanked sputum provided by Foundation for Innovative New Diagnostics. Concordance with culture diagnosis was 100% for smear-negative samples and 87% for smear-positive samples. Of the smear-positive samples, the high burden sample concordance was 100%. Samples were diagnosed on the basis of visual assessment of the dielectrophoresis array and by multiplex real-time quantitative PCR assay. The results described herein demonstrate the potential of the CAPTURE-XT technology to provide a powerful sample preparation tool that could function as a front-end platform for molecular detection. This versatile tool could equally be applied as a visual detection diagnostic, potentially associated with bacterial identification for low-cost screening or coupled with an expanded PCR assay for genotypic drug susceptibility testing.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , Testes de Sensibilidade Microbiana , Microfluídica , Reação em Cadeia da Polimerase Multiplex , Sensibilidade e Especificidade
3.
Microbiol Spectr ; 11(4): e0111423, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37358439

RESUMO

Mycobacterium tuberculosis whole-genome sequencing (WGS) is a powerful tool as it can provide data on population diversity, drug resistance, disease transmission, and mixed infections. Successful WGS is still reliant on high concentrations of DNA obtained through M. tuberculosis culture. Microfluidics technology plays a valuable role in single-cell research but has not yet been assessed as a bacterial enrichment strategy for culture-free WGS of M. tuberculosis. In a proof-of-principle study, we evaluated the use of Capture-XT, a microfluidic lab-on-chip cleanup and pathogen concentration platform to enrich M. tuberculosis bacilli from clinical sputum specimens for downstream DNA extraction and WGS. Three of the four (75%) samples processed by the microfluidics application passed the library preparation quality control, compared to only one of the four (25%) samples not enriched by the microfluidics M. tuberculosis capture application. WGS data were of sufficient quality, with mapping depth of ≥25× and 9 to 27% of reads mapping to the reference genome. These results suggest that microfluidics-based M. tuberculosis cell capture might be a promising method for M. tuberculosis enrichment in clinical sputum samples, which could facilitate culture-free M. tuberculosis WGS. IMPORTANCE Diagnosis of tuberculosis is effective using molecular methods; however, a comprehensive characterization of the resistance profile of Mycobacterium tuberculosis often requires culturing and phenotypic drug susceptibility testing or culturing followed by whole-genome sequencing (WGS). The phenotypic route can take anywhere from 1 to >3 months to result, by which point the patient may have acquired additional drug resistance. The WGS route is a very attractive option; however, culturing is the rate-limiting step. In this original article, we provide proof-of-principle evidence that microfluidics-based cell capture can be used on high-bacillary-load clinical samples for culture-free WGS.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , Microfluídica , Testes de Sensibilidade Microbiana , Tuberculose/microbiologia , Sequenciamento Completo do Genoma , Antituberculosos/farmacologia
4.
J Bacteriol ; 194(5): 925-31, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22155779

RESUMO

Iron is an essential nutrient that is implicated in most cellular oxidation reactions. However, iron is a highly reactive element that, if not appropriately chaperoned, can react with endogenously and exogenously generated oxidants such as hydrogen peroxide to generate highly toxic hydroxyl radicals. Dps proteins (DNA-binding proteins from starved cells) form a distinct class (the miniferritins) of iron-binding proteins within the ferritin superfamily. Bacillus anthracis encodes two Dps-like proteins, Dps1 and Dps2, the latter being one of the main iron-containing proteins in the cytoplasm. In this study, the function of Dps2 was characterized in vivo. A B. anthracis Δdps2 mutant was constructed by double-crossover mutagenesis. The growth of the Δdps2 mutant was unaffected by excess iron or iron-limiting conditions, indicating that the primary role of Dps2 is not that of iron sequestration and storage. However, the Δdps2 mutant was highly sensitive to H(2)O(2), and pretreatment of the cells with the iron chelator deferoxamine mesylate (DFM) significantly reduced its sensitivity to H(2)O(2) stress. In addition, the transcription of dps2 was upregulated by H(2)O(2) treatment and derepressed in a perR mutant, indicating that dps2 is a member of the regulon controlled by the PerR regulator. This indicates that the main role of Dps2 is to protect cells from peroxide stress by inhibiting the iron-catalyzed production of OH.


Assuntos
Bacillus anthracis/efeitos dos fármacos , Bacillus anthracis/fisiologia , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ferro/metabolismo , Estresse Oxidativo , Peróxidos/toxicidade , Estresse Fisiológico , Bacillus anthracis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Deleção de Genes , Perfilação da Expressão Gênica , Viabilidade Microbiana/efeitos dos fármacos , Ligação Proteica , Transcrição Gênica
5.
J Food Prot ; 73(2): 305-11, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20132676

RESUMO

Norovirus is the principal agent of bivalve shellfish-associated gastroenteric illness worldwide. Numerous studies using PCR have demonstrated norovirus contamination in a significant proportion of both oyster and other bivalve shellfish production areas and ready-to-eat products. By comparison, the number of epidemiologically confirmed shellfish-associated outbreaks is relatively low. This study attempts to compare norovirus RNA detection in Pacific oysters (Crassostrea gigas) by quantitative real-time reverse transcription PCR (RT-PCR) and human health risk. Self-reported customer complaints of illness in a restaurant setting (screened for credible norovirus symptoms) were compared with presence and levels of norovirus as determined by real-time RT-PCR for the batch of oysters consumed. No illness was reported for batches consistently negative for norovirus by real-time RT-PCR. However, norovirus was detected in some batches for which no illness was reported. Overall presence or absence of norovirus showed a significant association with illness complaints. In addition, the batch with the highest norovirus RNA levels also resulted in the highest rate of reported illness, suggesting a linkage between virus RNA levels and health risks. This study suggests that detection of high levels of norovirus RNA in oysters is indicative of a significantly elevated health risk. However, illness may not necessarily be reported after detection of norovirus RNA at low levels.


Assuntos
Crassostrea/microbiologia , Contaminação de Alimentos/análise , Norovirus/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Frutos do Mar/microbiologia , Animais , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/virologia , Qualidade de Produtos para o Consumidor , Microbiologia de Alimentos , Gastroenterite/epidemiologia , Gastroenterite/virologia , Humanos , RNA Viral/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , Sensibilidade e Especificidade , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA