Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Neurosci ; 43(35): 6185-6196, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37541835

RESUMO

Age-related impairments in value representations and updating during decision-making and reward-based learning are often related to age-related attenuation in the catecholamine system such as dopamine (DA) and norepinephrine (NE). However, it is unclear to what extent age-related declines in NE functioning in humans affect reward-based decision-making. We conducted a probabilistic decision-making task and applied a Q-learning model to investigate participants' anticipatory values and value sensitivities. Task-related pupil dilations and locus coeruleus (LC) magnetic resonance imaging (MRI) contrast, which served as a potential window of the LC-NE functions, were assessed in younger and older adults. Results showed that in both choice and feedback phases, younger adults' (N = 42, 22 males) pupil dilations negatively correlated with anticipatory values, indicating uncertainty about outcome probabilities. Uncertainty-evoked pupil dilations in older adults (N = 41, 27 males) were smaller, indicating age-related impairments in value estimation and updating. In both age groups, participants who showed a larger uncertainty-evoked pupil dilation exhibited a higher value sensitivity as reflected in the ß parameter of the reinforcement Q-learning model. Furthermore, older adults (N = 34, 29 males) showed a lower LC-MRI contrast than younger adults (N = 25, 15 males). The LC-MRI contrast positively correlated with value sensitivity only in older but not in younger adults. These findings suggest that task-related pupillary responses can reflect age-related deficits in value estimation and updating during reward-based decision-making. Our evidence with the LC-MRI contrast further showed the age-related decline of the LC structure in modulating value representations during reward-based learning.SIGNIFICANCE STATEMENT Age-related impairments in value representation and updating during reward-based learning are associated with declines in the catecholamine modulation with age. However, it is unclear how age-related declines in the LC-NE system may affect reward-based learning. Here, we show that compared with younger adults, older adults exhibited reduced uncertainty-induced pupil dilations, suggesting age-related deficits in value estimation and updating. Older adults showed a lower structural MRI of the LC contrast than younger adults, indicating age-related degeneration of the LC structure. The association between the LC-MRI contrast and value sensitivity was only observed in older adults. Our findings may demonstrate a pioneering model to unravel the role of the LC-NE system in reward-based learning in aging.


Assuntos
Locus Cerúleo , Recompensa , Masculino , Humanos , Idoso , Locus Cerúleo/diagnóstico por imagem , Locus Cerúleo/fisiologia , Aprendizagem , Reforço Psicológico , Catecolaminas
2.
Cereb Cortex ; 33(23): 11247-11256, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-37782941

RESUMO

Accumulated evidence from animal studies suggests a role for the neuromodulator dopamine in memory processes, particularly under conditions of novelty or reward. Our understanding of how dopaminergic modulation impacts spatial representations and spatial memory in humans remains limited. Recent evidence suggests age-specific regulation effects of dopamine pharmacology on activity in the medial temporal lobe, a key region for spatial memory. To which degree this modulation affects spatially patterned medial temporal representations remains unclear. We reanalyzed recent data from a pharmacological dopamine challenge during functional brain imaging combined with a virtual object-location memory paradigm to assess the effect of Levodopa, a dopamine precursor, on grid-like activity in the entorhinal cortex. We found that Levodopa impaired grid cell-like representations in a sample of young adults (n = 55, age = 26-35 years) in a novel environment, accompanied by reduced spatial memory performance. We observed no such impairment when Levodopa was delivered to participants who had prior experience with the task. These results are consistent with a role of dopamine in modulating the encoding of novel spatial experiences. Our results suggest that dopamine signaling may play a larger role in shaping ongoing spatial representations than previously thought.


Assuntos
Levodopa , Aprendizagem Espacial , Animais , Humanos , Adulto Jovem , Adulto , Levodopa/farmacologia , Dopamina , Córtex Entorrinal/fisiologia , Memória Espacial
3.
Neuroimage ; 273: 120099, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37037380

RESUMO

Aging is associated with changes in spatial navigation behavior. In addition to an overall performance decline, older adults tend to rely more on proximal location cue information than on environmental boundary information during spatial navigation compared to young adults. The fact that older adults are more susceptible to errors during spatial navigation might be partly attributed to deficient dopaminergic modulation of hippocampal and striatal functioning. Hence, elevating dopamine levels might differentially modulate spatial navigation and memory performance in young and older adults. In this work, we administered levodopa (L-DOPA) in a double-blind within-subject, placebo-controlled design and recorded functional neuroimaging while young and older adults performed a 3D spatial navigation task in which boundary geometry or the position of a location cue were systematically manipulated. An age by intervention interaction on the neural level revealed an upregulation of brain responses in older adults and a downregulation of responses in young adults within the medial temporal lobe (including hippocampus and parahippocampus) and brainstem, during memory retrieval. Behaviorally, L-DOPA had no effect on older adults' overall memory performance; however, older adults whose spatial memory improved under L-DOPA also showed a shift towards more boundary processing under L-DOPA. In young adults, L-DOPA induced a decline in spatial memory performance in task-naïve participants. These results are consistent with the inverted-U-shaped hypothesis of dopamine signaling and cognitive function and suggest that increasing dopamine availability improves hippocampus-dependent place learning in some older adults.


Assuntos
Dopamina , Navegação Espacial , Idoso , Humanos , Adulto Jovem , Hipocampo/fisiologia , Levodopa/farmacologia , Memória Espacial/fisiologia , Navegação Espacial/fisiologia , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiologia , Método Duplo-Cego
4.
Neuroimage ; 264: 119670, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36243268

RESUMO

Previous studies indicate a role of dopamine in spatial navigation. Although neural representations of direction are an important aspect of spatial cognition, it is not well understood whether dopamine directly affects these representations, or only impacts other aspects of spatial brain function. Moreover, both dopamine and spatial cognition decline sharply during age, raising the question which effect dopamine has on directional signals in the brain of older adults. To investigate these questions, we used a double-blind cross-over L-DOPA/Placebo intervention design in which 43 younger and 37 older adults navigated in a virtual spatial environment while undergoing functional magnetic resonance imaging (fMRI). We studied the effect of L-DOPA, a dopamine precursor, on fMRI activation patterns that encode spatial walking directions that have previously been shown to lose specificity with age. This was done in predefined regions of interest, including the early visual cortex, retrosplenial cortex, and hippocampus. Classification of brain activation patterns associated with different walking directions was improved across all regions following L-DOPA administration, suggesting that dopamine broadly enhances neural representations of direction. No evidence for differences between regions was found. In the hippocampus these results were found in both age groups, while in the retrosplenial cortex they were only observed in younger adults. Taken together, our study provides evidence for a link between dopamine and the specificity of neural responses during spatial navigation. SIGNIFICANCE STATEMENT: The sense of direction is an important aspect of spatial navigation, and neural representations of direction can be found throughout a large network of space-related brain regions. But what influences how well these representations track someone's true direction? Using a double-blind cross-over L-DOPA/Placebo intervention design, we find causal evidence that the neurotransmitter dopamine impacts the fidelity of direction selective neural representations in the human hippocampus and retrosplenial cortex. Interestingly, the effect of L-DOPA was either equally present or even smaller in older adults, despite the well-known age related decline of dopamine. These results provide novel insights into how dopamine shapes the neural representations that underlie spatial navigation.


Assuntos
Levodopa , Navegação Espacial , Humanos , Idoso , Levodopa/farmacologia , Dopamina/fisiologia , Navegação Espacial/fisiologia , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética
5.
Aging Brain ; 5: 100109, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38380149

RESUMO

Older adults demonstrate difficulties in sequential decision-making, which is partly attributed to under-recruitment of prefrontal networks. It is, therefore, important to understand the mechanisms that may improve this ability. This study investigated the effectiveness of an 18-sessions, home-based cognitive intervention and the neural mechanisms that underpin individual differences in intervention effects. Participants were required to learn sequential choices in a 3-stage Markov decision-making task that would yield the most rewards. Participants were assigned to better or worse responders group based on their performance at the last intervention session (T18). Better responders improved significantly starting from the fifth intervention session while worse responders did not improve across all training sessions. At post-intervention, only better responders showed condition-dependent modulation of the dorsolateral prefrontal cortex (DLPFC) as measured by fNIRS, with higher DLPFC activity in the delayed condition. Despite large individual differences, our data showed that value-based sequential-decision-making and its corresponding neural mechanisms can be remediated via home-based cognitive intervention in some older adults; moreover, individual differences in recruiting prefrontal activities after the intervention are associated with variations in intervention outcomes. Intervention-related gains were also maintained at three months after post-intervention. However, future studies should investigate the potential of combining other intervention methods such as non-invasive brain stimulation with cognitive intervention for older adults who do not respond to the intervention, thus emphasizing the importance of developing individualized intervention programs for older adults.

6.
Sci Rep ; 13(1): 7692, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169942

RESUMO

Forward planning is crucial to maximize outcome in complex sequential decision-making scenarios. In this cross-sectional study, we were particularly interested in age-related differences of forward planning. We presumed that especially older individuals would show a shorter planning depth to keep the costs of model-based decision-making within limits. To test this hypothesis, we developed a sequential decision-making task to assess forward planning in younger (age < 40 years; n = 25) and older (age > 60 years; n = 27) adults. By using reinforcement learning modelling, we inferred planning depths from participants' choices. Our results showed significantly shorter planning depths and higher response noise for older adults. Age differences in planning depth were only partially explained by well-known cognitive covariates such as working memory and processing speed. Consistent with previous findings, this indicates age-related shifts away from model-based behaviour in older adults. In addition to a shorter planning depth, our findings suggest that older adults also apply a variety of heuristical low-cost strategies.


Assuntos
Memória de Curto Prazo , Ruído , Humanos , Idoso , Adulto , Pessoa de Meia-Idade , Estudos Transversais , Aprendizagem , Tomada de Decisões/fisiologia
7.
Alzheimers Dement (N Y) ; 8(1): e12262, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35229023

RESUMO

INTRODUCTION: Given rapid global population aging, developing interventions against age-associated cognitive decline is an important medical and societal goal. We evaluated a cognitive training protocol combined with transcranial direct current stimulation (tDCS) on trained and non-trained functions in non-demented older adults. METHODS: Fifty-six older adults (65-80 years) were randomly assigned to one of two interventional groups, using age and baseline performance as strata. Both groups performed a nine-session cognitive training over 3 weeks with either concurrent anodal tDCS (atDCS, 1 mA, 20 minutes) over the left dorsolateral prefrontal cortex (target intervention) or sham stimulation (control intervention). Primary outcome was performance on the trained letter updating task immediately after training. Secondary outcomes included performance on other executive and memory (near and far transfer) tasks. All tasks were administered at baseline, post-intervention, and at 1- and 7-month follow-up assessments. Prespecified analyses to investigate treatment effects were conducted using mixed-model analyses. RESULTS: No between-group differences emerged in the trained letter updating and Markov decision-making tasks at post-intervention and at follow-up timepoints. Secondary analyses revealed group differences in one near-transfer task: Superior n-back task performance was observed in the tDCS group at post-intervention and at follow-up. No such effects were observed for the other transfer tasks. Improvements in working memory were associated with individually induced electric field strengths. DISCUSSION: Cognitive training with atDCS did not lead to superior improvement in trained task performance compared to cognitive training with sham stimulation. Thus, our results do not support the immediate benefit of tDCS-assisted multi-session cognitive training on the trained function. As the intervention enhanced performance in a near-transfer working memory task, we provide exploratory evidence for effects on non-trained working memory functions in non-demented older adults that persist over a period of 1 month.

8.
Sci Rep ; 11(1): 15257, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315933

RESUMO

Spatial learning can be based on intramaze cues and environmental boundaries. These processes are predominantly subserved by striatal- and hippocampal-dependent circuitries, respectively. Maturation and aging processes in these brain regions may affect lifespan differences in their contributions to spatial learning. We independently manipulated an intramaze cue or the environment's boundary in a navigation task in 27 younger children (6-8 years), 30 older children (10-13 years), 29 adolescents (15-17 years), 29 younger adults (20-35 years) and 26 older adults (65-80 years) to investigate lifespan age differences in the relative prioritization of either information. Whereas learning based on an intramaze cue showed earlier maturation during the progression from younger to later childhood and remained relatively stable across adulthood, maturation of boundary-based learning was more protracted towards peri-adolescence and showed strong aging-related decline. Furthermore, individual differences in prioritizing intramaze cue- over computationally more demanding boundary-based learning was positively associated with cognitive processing fluctuations and this association was partially mediated by spatial working memory capacity during adult, but not during child development. This evidence reveals different age gradients of two modes of spatial learning across the lifespan, which seem further influenced by individual differences in cognitive processing fluctuations and working memory, particularly during aging.


Assuntos
Navegação Espacial , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Feminino , Humanos , Longevidade , Masculino , Memória de Curto Prazo , Pessoa de Meia-Idade
9.
J Clin Psychiatry ; 71(5): 543-7, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20441718

RESUMO

OBJECTIVE: As exposure to different types of traumatic stressors increases, the occurrence of posttraumatic stress disorder (PTSD) increases. However, because some people exhibit either surprising resilience or high vulnerability, further influencing factors have been conjectured, such as gene-environment interactions. The SLC6A4 gene, which encodes serotonin transporter, has been identified as predisposing toward differential emotional processing between genotypes of its promoter polymorphism. METHOD: We investigated 408 refugees from the Rwandan genocide and assessed lifetime exposure to traumatic events, PTSD (according to DSM-IV) status, and genotype of the SLC6A4 promoter polymorphism. The study was conducted from March 2006 to February 2007. RESULTS: The prevalence of PTSD approached 100% when traumatic exposure reached extreme levels. However, persons homozygous for the short allele of the SLC6A4 promoter polymorphism showed no dose-response relationship but were at high risk for developing PTSD after very few traumatic events. This genotype influence vanished with increasing exposure to traumatic stressors. CONCLUSION: We find evidence for a gene-environment interplay for PTSD and show that genetic influences lose importance when environmental factors cause an extremely high trauma burden to an individual. In the future, it may be important to determine whether the effectiveness of therapeutic interventions in PTSD is also modulated by the SLC6A4 genotype.


Assuntos
Homicídio/psicologia , Polimorfismo Genético/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Transtornos de Estresse Pós-Traumáticos/genética , Estresse Psicológico/genética , Sobreviventes/psicologia , Adolescente , Adulto , Idoso , Feminino , Predisposição Genética para Doença/genética , Genótipo , Homozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Escalas de Graduação Psiquiátrica , Ruanda , Transtornos de Estresse Pós-Traumáticos/psicologia , Estresse Psicológico/psicologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA