Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Toxicol Pathol ; : 1926233241248656, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742644

RESUMO

Emerging urinary kidney safety biomarkers have been evaluated in recent years and have been shown to be superior to the serum parameters blood urea nitrogen (BUN) and creatinine (sCr) for monitoring kidney injury in the proximal tubule. However, their potential application in differentiating the location of the initial kidney injury (eg, glomerulus vs tubule) has not been fully explored. Here, we assessed the performance of two algorithms that were constructed using either an empirical or a mathematical model to predict the site of kidney injury using a data set consisting of 22 rat kidney toxicity studies with known urine biomarker and histopathologic outcomes. Two kidney safety biomarkers used in both models, kidney injury molecule 1 (KIM-1) and albumin (ALB), were the best performers to differentiate glomerular injury from tubular injury. The performance of algorithms using these two biomarkers against the gold standard of kidney histopathologic examination showed high sensitivity in differentiating the location of the kidney damage to either the glomerulus or the proximal tubules. These data support the exploration of such an approach for use in clinical settings, leveraging urinary biomarker data to aid in the diagnosis of either glomerular or tubular injury where histopathologic assessments are not conducted.

2.
Toxicol Pathol ; 51(1-2): 15-26, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37078689

RESUMO

Activating mutations of the leucine-rich repeat kinase 2 (LRRK2) gene are associated with Parkinson disease (PD), prompting development of LRRK2 inhibitors as potential treatment for PD. However, kidney safety concerns have surfaced from LRRK2 knockout (KO) mice and rats and from repeat-dose studies in rodents administered LRRK2 inhibitors. To support drug development of this therapeutic target, we conducted a study of 26 weeks' duration in 2-month-old wild-type and LRRK2 KO Long-Evans Hooded rats to systematically examine the performance of urinary safety biomarkers and to characterize the nature of the morphological changes in the kidneys by light microscopy and by ultrastructural evaluation. Our data reveal the time course of early-onset albuminuria at 3 and 4 months in LRRK2 KO female and male rats, respectively. The increases in urine albumin were not accompanied by concurrent increases in serum creatinine, blood urea nitrogen, or renal safety biomarkers such as kidney injury molecule 1 or clusterin, although morphological alterations in both glomerular and tubular structure were identified by light and transmission electron microscopy at 8 months of age. Diet optimization with controlled food intake attenuated the progression of albuminuria and associated renal changes.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença de Parkinson , Proteínas Serina-Treonina Quinases , Animais , Feminino , Masculino , Camundongos , Ratos , Albuminúria/patologia , Biomarcadores , Rim/patologia , Leucina , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Camundongos Knockout , Mutação , Doença de Parkinson/tratamento farmacológico , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Ratos Long-Evans
3.
Arch Toxicol ; 97(3): 769-785, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36481916

RESUMO

Drug-induced pancreatic injury (DIPI) is an issue seen in drug development both in nonclinical and clinical contexts. DIPI is typically monitored by measurement of lipase and/or amylase, however, both enzymes lack sensitivity and specificity. Although candidate protein biomarkers specific to pancreas exist, antibody-based assay development is difficult due to their small size or the rapid cleavage by proteolytic enzymes released during pancreatic injury. Here we report the development of a novel multiplexed immunoaffinity-based liquid chromatography mass spectrometric assay (IA-LC-MS/MS) for trypsinogen activation peptide (TAP) and carboxypeptidases A1 and A2 (CPA1, CPA2). This method is based on the enzymatic digestion of the target proteins, immunoprecipitation of the peptides with specific antibodies and LC-MS/MS analysis. This assay was used to detect TAP, CPA1, and CPA2 in 470 plasma samples collected from 9 in-vivo rat studies with pancreatic injury and 8 specificity studies with injury in other organs to assess their performance in monitoring exocrine pancreas injury. The TAP, CPA1, and CPA2 response was compared to histopathology, lipase, amylase and microRNA217. In summary, TAP, CPA1, and CPA2 proteins measured in rat plasma were sensitive and specific biomarkers for monitoring drug-induced pancreatic injury; outperforming lipase and amylase both by higher sensitivity of detection and by sustained increases in plasma observed over a longer time period. These protein-based assays and potentially others under development, are valuable tools for use in nonclinical drug development and as future translatable biomarkers for assessment in clinical settings to further improve patient safety.


Assuntos
Amilases , Espectrometria de Massas em Tandem , Ratos , Animais , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Carboxipeptidases A/metabolismo , Biomarcadores , Lipase
4.
Toxicol Pathol ; 50(1): 35-46, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34657537

RESUMO

Kidney biopsies are used sparingly to diagnose kidney injury in the clinic. Here we have conducted a small exploratory study to directly compare the low-grade kidney injury monitoring performance of serum safety biomarkers, novel urine safety biomarkers, microscopic histopathology and targeted gene expression alterations in kidney biopsy specimens in rhesus monkeys treated with tobramycin. Targeted gene expression increases were observed in the kidney biopsy samples and whole kidney sections for kidney injury molecule 1 (KIM-1), clusterin (CLU), osteopontin (OPN) messenger RNA transcripts. In addition, increases of the urinary kidney safety protein biomarkers including KIM-1, CLU, OPN were also observed. These increases in gene expression and urinary protein end point were in concordance with the eventual low-grade kidney lesions seen in terminal tissue sections. In contrast, conventional serum biomarkers blood urea nitrogen and serum creatinine were not as sensitive in monitoring kidney injury. Although these data do not support routinely adding kidney biopsies to regular toxicology studies, they provide evidence on the value and limitations of incorporating gene expression profiling on kidney biopsy specimens, further underscore the value of urinary kidney safety biomarkers for improved low-grade kidney injury monitoring, and open the door for future definitive studies.


Assuntos
Injúria Renal Aguda , Tobramicina , Injúria Renal Aguda/diagnóstico , Animais , Biomarcadores , Biópsia , Perfilação da Expressão Gênica , Rim/patologia , Macaca mulatta , Tobramicina/metabolismo
5.
Int J Mol Sci ; 23(3)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35163149

RESUMO

The plasma levels of tissue-specific microRNAs can be used as diagnostic, disease severity and prognostic biomarkers for chronic and acute diseases and drug-induced injury. Thereby, the combination of diverse microRNAs into biomarker signatures using multivariate statistics seems especially powerful from the perspective of tissue and condition specific microRNA shedding into the plasma. Although next-generation sequencing (NGS) technology enables one to analyse circulating microRNAs on a genome-scale level, it suffers from potential biases (e.g., adapter ligation bias) and lacks absolute transcript quantitation as well as tailor-made quality controls. In order to develop a robust NGS discovery assay for genome-scale quantitation of circulating microRNAs, we first evaluated the sensitivity, repeatability and ligation bias of four commercially available small RNA library preparation protocols. The protocol from RealSeq Biosciences was selected based on its performance and usability and coupled with a novel panel of exogenous small RNA spike-in controls to enable quality control and absolute quantitation, thus ensuring comparability of data across independent NGS experiments. The established microRNA Next-Generation-Sequencing Discovery Assay (miND) was validated for its relative accuracy, precision, analytical measurement range and sequencing bias and was considered fit-for-purpose for microRNA biomarker discovery. Summarized, all these criteria were met, and thus, our analytical platform is considered fit-for-purpose for microRNA biomarker discovery from biofluids in the setting of any diagnostic, prognostic or patient stratification need. The established miND assay was tested on serum, cerebrospinal fluid (CSF), synovial fluid (SF) and extracellular vesicles (EV) extracted from cell culture medium of primary cells and proved its potential to be used across different sample types.


Assuntos
Biomarcadores/análise , MicroRNA Circulante/análise , Vesículas Extracelulares/metabolismo , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de RNA/métodos , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , MicroRNA Circulante/sangue , MicroRNA Circulante/líquido cefalorraquidiano , Humanos
6.
Arch Toxicol ; 95(11): 3475-3495, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34510227

RESUMO

microRNAs (miRNAs or miRs) are short non-coding RNA molecules which have been shown to be dysregulated and released into the extracellular milieu as a result of many drug and non-drug-induced pathologies in different organ systems. Consequently, circulating miRs have been proposed as useful biomarkers of many disease states, including drug-induced tissue injury. miRs have shown potential to support or even replace the existing traditional biomarkers of drug-induced toxicity in terms of sensitivity and specificity, and there is some evidence for their improved diagnostic and prognostic value. However, several pre-analytical and analytical challenges, mainly associated with assay standardization, require solutions before circulating miRs can be successfully translated into the clinic. This review will consider the value and potential for the use of circulating miRs in drug-safety assessment and describe a systems approach to the analysis of the miRNAome in the discovery setting, as well as highlighting standardization issues that at this stage prevent their clinical use as biomarkers. Highlighting these challenges will hopefully drive future research into finding appropriate solutions, and eventually circulating miRs may be translated to the clinic where their undoubted biomarker potential can be used to benefit patients in rapid, easy to use, point-of-care test systems.


Assuntos
Biomarcadores Farmacológicos , MicroRNAs/sangue , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/diagnóstico , Humanos , MicroRNAs/análise , Sensibilidade e Especificidade
7.
Regul Toxicol Pharmacol ; 120: 104857, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33387566

RESUMO

Pharmaceutical and biotechnology companies rarely disclose their use of translational emerging safety biomarkers (ESBs) during drug development, and the impact of ESB use on the speed of drug development remains unclear. A cross-industry survey of 20 companies of varying size was conducted to understand current trends in ESB use and future use prospects. The objectives were to: (1) determine current ESB use in nonclinical and clinical drug development and impact on asset advancement; (2) identify opportunities, gaps, and challenges to greater ESB implementation; and (3) benchmark perspectives on regulatory acceptance. Although ESBs were employed in only 5-50% of studies/programs, most companies used ESBs to some extent, with larger companies demonstrating greater nonclinical use. Inclusion of ESBs in investigational new drug applications (INDs) was similar across all companies; however, differences in clinical trial usage could vary among the prevailing health authority (HA). Broader implementation of ESBs requires resource support, cross-industry partnerships, and collaboration with HAs. This includes generating sufficient foundational data, demonstrating nonclinical to clinical translatability and practical utility, and clearly written criteria by HAs to enable qualification. If achieved, ESBs will play a critical role in the development of next-generation, translationally-tailored standard laboratory tests for drug development.


Assuntos
Biomarcadores Farmacológicos/metabolismo , Ensaios Clínicos como Assunto/normas , Indústria Farmacêutica/normas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo , Inquéritos e Questionários , Animais , Ensaios Clínicos como Assunto/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/normas , Indústria Farmacêutica/métodos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/diagnóstico , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Previsões , Humanos , Preparações Farmacêuticas/metabolismo , Distribuição Tecidual/efeitos dos fármacos , Distribuição Tecidual/fisiologia
8.
Toxicol Appl Pharmacol ; 406: 115216, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32871117

RESUMO

Indoleamine-2,3-dioxygenase 1 (IDO1) and tryptophan-2,3-dioxygenase 2 (TDO2) degrade tryptophan (Trp) to kynurenine (Kyn), and these enzymes have promise as therapeutic targets. A comprehensive characterization of potential safety liabilities of IDO1 and TDO2 inhibitors using knockout (KO) mice has not been assessed, nor has the dual Ido1/Tdo2 KO been reported. Here we characterized male and female mice with KOs for Ido1, Tdo2, and Ido1/Tdo2 and compared findings to the wild type (WT) mouse strain, evaluated for 14 days, using metabolomics, transcriptional profiling, behavioral analysis, spleen immunophenotyping, comprehensive histopathological analysis, and serum clinical chemistry. Multiple metabolomic changes were seen in KO mice. For catabolism of Trp to Kyn and anthranilic acid, both substrates were decreased in liver of Tdo2 and dual KO mice. Metabolism of Trp to serotonin and its metabolites resulted in an increase in 5-Hydroxyindole-3-acetic acid in the Tdo2 and dual KO mice. Ido1 and dual KO mice displayed a Kyn reduction in plasma but not in liver. Nicotinamide synthesis and conversion of glucose to lactic acid were not impacted. A slight decrease in serum alkaline phosphatase was seen in all KOs, and small changes in liver gene expression of genes unrelated to tryptophan metabolism were observed. Regarding other parameters, no genotype-specific changes were observed. In summary, this work shows metabolomic pathway changes for metabolites downstream of tryptophan in these KO mice, and suggests that inhibition of the IDO1 and TDO2 enzymes would be well tolerated whether inhibited individually or in combination since no safety liabilities were uncovered.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase/genética , Triptofano Oxigenase/genética , Triptofano/metabolismo , Animais , Feminino , Cinurenina/metabolismo , Fígado/metabolismo , Masculino , Redes e Vias Metabólicas , Metabolômica , Camundongos Knockout , Serotonina/metabolismo , Baço/imunologia , ortoaminobenzoatos/metabolismo
9.
Toxicol Pathol ; 48(5): 633-648, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32633702

RESUMO

To date, there has been very little published data evaluating the performance of novel urinary kidney biomarkers in nonhuman primates (NHPs). To assess the biomarker performance and characterize the corresponding histomorphologic patterns of tubular renal injury in the NHP, several studies were conducted using mechanistically diverse nephrotoxicants including cefpirome, cisplatin, naproxen, cyclosporine, and a combination of gentamicin with everninomicin. An evaluation of 10 urinary biomarkers (albumin, clusterin, cystatin C, kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, liver-type fatty acid-binding protein, N-acetyl-ß-D-glucosaminidase, osteopontin, retinol binding protein 4 and total protein) was performed on urine collected from these studies. Each of these 5 treatments resulted in kidney proximal tubule injury of various severities. Histomorphologic features observed following treatment were generally consistent with analogous drug-induced changes in humans described in the literature. Most of the analyzed biomarkers were able to detect the injury earlier and with greater sensitivity than blood urea nitrogen and serum creatinine. Across all studies, KIM-1 and clusterin showed the highest overall performance. Differences in the patterns of biomarker responsiveness were noted among certain studies that may be informing tubular injury severity and recovery potential, underlying histopathologic processes, and prognosis. These findings demonstrate the utility of urinary kidney translational safety biomarkers in NHPs and provide additional supporting evidence for translating these biomarkers for use in clinical trial settings to further ensure patient safety.


Assuntos
Biomarcadores/urina , Rim/efeitos dos fármacos , Injúria Renal Aguda/induzido quimicamente , Animais , Cisplatino , Creatinina , Cistatina C , Gentamicinas , Lipocalina-2 , Primatas
10.
Toxicol Pathol ; 46(8): 1002-1005, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30189777

RESUMO

A scientific session entitled "New Frontiers: Approaches to Understand the Mechanistic Basis of Renal Toxicity" focused on novel biomarkers to monitor kidney injury both preclinically and clinically, as well as providing mechanistic insight of the induced injury. Further, the role and impact of kidney membrane transporters in drug-induced kidney toxicity provided additional considerations when understanding kidney injury and the complex role of drug transporters in either sensitivity or resistance to drug-induced injury. The onset of nephropathy in diabetic patients was also presented, focusing on the quest to discover novel biomarkers that would differentiate diabetic populations more susceptible to nephropathy and renal failure. The session highlighted exciting new research areas and novel biomarkers that will enhance our understanding of kidney injury and provide tools for ensuring patient safety clinically.


Assuntos
Nefropatias/induzido quimicamente , Nefropatias/diagnóstico , Nefropatias/fisiopatologia , Animais , Biomarcadores/análise , Humanos
11.
Toxicol Pathol ; 46(5): 553-563, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29807506

RESUMO

Newer urinary protein kidney safety biomarkers can outperform the conventional kidney functional biomarkers blood urea nitrogen (BUN) and serum creatinine (SCr) in rats. However, there is far less experience with the relative performance of these biomarkers in dogs and nonhuman primates. Here, we report urine protein biomarker performance in tenofovir-treated cynomolgus monkeys and beagle dogs. Tenofovir intravenous daily dosing in monkeys for 2 or 4 weeks at 30 mg/kg/day resulted in minimal to moderate tubular degeneration and regeneration, and tenofovir disoproxil fumarate oral dosing in dogs for 10 days at 45 mg/kg/day resulted in mild to marked tubular degeneration, necrosis, and regeneration. Among biomarkers tested, kidney injury molecule 1 (Kim-1) and clusterin (CLU) clearly outperformed BUN and SCr and were the most reliable in detecting the onset and progression of tenofovir-induced tubular injury. Cystatin C, retinol binding protein 4, ß2-microglobulin, neutrophil gelatinase-associated lipocalin, albumin, and total protein also performed better than BUN and SCr and added value when considered together with Kim-1 and CLU. These findings demonstrate the promising utility of these urinary safety biomarkers in monkeys and dogs and support their further evaluation in human to improve early detection of renal tubular injury.


Assuntos
Injúria Renal Aguda/urina , Biomarcadores/urina , Túbulos Renais/efeitos dos fármacos , Tenofovir/toxicidade , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Administração Oral , Animais , Biomarcadores/sangue , Cães , Feminino , Injeções Intravenosas , Túbulos Renais/patologia , Macaca fascicularis , Masculino , Sensibilidade e Especificidade , Especificidade da Espécie
12.
Int J Toxicol ; 37(2): 116-120, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29357765

RESUMO

Novel tissue injury biomarkers have recently been identified that outperform or add value to the conventional safety biomarkers. These novel biomarkers have enhanced sensitivity and/or specificity in monitoring drug-induced tissue injury in a variety of tissues, included liver, kidney, and skeletal muscle. Among these novel biomarkers, microRNAs (miRNAs) are one type in particular that have received much attention in recent years. These microRNAs are short, endogenous noncoding nucleic acids that are involved in modulation and regulation of mRNA transcripts. Other attributes of miRNAs are that they exist in tissues at high abundance, and individual miRNAs can be highly tissue-specific. These miRNAs can be readily assayed in blood, urine, or cerebral spinal fluid, making them attractive as accessible biomarkers of tissue injury. Further, the miRNA processing involves embedding the miRNA within a protein complex, making them stable in plasma upon leakage from injured tissues. This review article will highlight the discovery of tissue-specific miRNAs and their evolution as novel toxicity biomarkers in recent years.


Assuntos
Biomarcadores , MicroRNAs , Animais , Humanos , Neoplasias
13.
Toxicol Pathol ; 45(5): 604-613, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28673196

RESUMO

Conjugation with polyethylene glycol (PEG) is a strategy for improving the pharmaceutical properties of therapeutic proteins. In nonclinical studies of PEGylated compounds, microscopic tissue vacuolation is often observed, characterized ultrastructurally in this report by lysosomal distension. Although PEGylation-associated vacuolation appears to be of limited toxicologic concern when alternative therapies are limited, the risk-benefit considerations may be impacted by uncertainty about reversibility, lack of methods for monitoring PEG accumulation in vivo without biopsy, and the variability in tissues affected depending on species studied. We demonstrate the use of magnetic resonance spectroscopy (MRS) to measure PEG concentrations at multiple time points in vivo in the kidney with comparison to PEG concentrations ex vivo in body fluids and tissue extracts using nuclear magnetic resonance (NMR) spectroscopy. Furthermore, we demonstrate the use of these techniques to study distribution and elimination of PEG in a dog model of PEGylation-associated vacuolation. This report suggests that MRS could be further investigated as a feasible imaging-based method for monitoring PEG accumulation in a clinical setting in conjunction with NMR quantitation of PEG in plasma and urine.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Polietilenoglicóis/química , Polietilenoglicóis/metabolismo , Proteínas/química , Proteínas/metabolismo , Vacúolos/química , Animais , Córtex Cerebral/química , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Cães , Feminino , Rim/química , Rim/citologia , Rim/metabolismo , Masculino , Polietilenoglicóis/farmacocinética , Proteínas/farmacocinética , Ratos , Ratos Sprague-Dawley , Baço/química , Baço/citologia , Baço/metabolismo , Distribuição Tecidual , Vacúolos/metabolismo , Vacúolos/ultraestrutura
14.
Toxicol Pathol ; 45(5): 633-648, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28830331

RESUMO

Lack of biomarkers specific to and either predictive or diagnostic of drug-induced vascular injury (DIVI) continues to be a major obstacle during drug development. Biomarkers derived from physiologic responses to vessel injury, such as inflammation and vascular remodeling, could make good candidates; however, they characteristically lack specificity for vasculature. We evaluated whether vascular remodeling-associated protease activity, as well as changes to vessel permeability resulting from DIVI, could be visualized ex vivo in affected vessels, thereby allowing for visual monitoring of the pathology to address specificity. We found that visualization of matrix metalloproteinase activation accompanied by increased vascular leakage in the mesentery of rats treated with agents known to induce vascular injury correlated well with incidence and severity of histopathological findings and associated inflammation as well as with circulating levels of tissue inhibitors of metalloproteinase 1 and neutrophil gelatinase-associated lipocalin. The weight of evidence approach reported here shows promise as a composite DIVI preclinical tool by means of complementing noninvasive monitoring of circulating biomarkers of inflammation with direct imaging of affected vasculature and thus lending specificity to its interpretation. These findings are supportive of a potential strategy that relies on translational imaging tools in conjunction with circulating biomarker data for high-specificity monitoring of VI both preclinically and clinically.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Metaloproteinases da Matriz/metabolismo , Imagem Óptica/métodos , Lesões do Sistema Vascular/induzido quimicamente , Lesões do Sistema Vascular/diagnóstico por imagem , Animais , Biomarcadores/análise , Cães , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Corantes Fluorescentes/análise , Corantes Fluorescentes/química , Imuno-Histoquímica , Masculino , Metaloproteinases da Matriz/química , Artérias Mesentéricas/diagnóstico por imagem , Ratos , Ratos Sprague-Dawley
15.
Toxicol Res (Camb) ; 13(1): tfad120, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38223529

RESUMO

Fialuridine (FIAU) is a nucleoside-based drug that caused liver failure and deaths in a human clinical trial that were not predicted by nonclinical safety studies. A recent report concluded that a TK-NOG humanized liver (hu-liver) mouse model detected human-specific FIAU liver toxicity, and broader use of that model could improve drug safety testing. We further evaluated this model at similar dose levels to assess FIAU sensitivity and potential mechanistic biomarkers. Although we were unable to reproduce the marked acute liver toxicity with two separate studies (including one with a "sensitized" donor), we identified molecular biomarkers reflecting the early stages of FIAU mitochondrial toxicity, which were not seen with its stereoisomer (FIRU). Dose dependent FIAU-induced changes in hu-liver mice included more pronounced reductions in mitochondrial to nuclear DNA (mtDNA/nucDNA) ratios in human hepatocytes compared to mouse hepatocytes and kidneys of the same animals. FIAU treatment also triggered a p53 transcriptional response and opposing changes in transcripts of nuclear- and mitochondrial-encoded mitochondrial proteins. The time dependent accumulation of FIAU into mtDNA is consistent with the ≥9-week latency of liver toxicity observed for FIAU in the clinic. Similar changes were observed in an in vitro micro-patterned hepatocyte coculture system. In addition, FIAU-dependent mtDNA/nucDNA ratio and transcriptional alterations, especially reductions in mitochondrially encoded transcripts, were seen in livers of non-engrafted TK-NOG and CD-1 mice dosed for a shorter period. Conclusion: These mechanistic biomarker findings can be leveraged in an in vitro model and in a more routine preclinical model (CD-1 mice) to identify nucleosides with such a FIAU-like mitochondrial toxicity mechanistic liability potential. Further optimization of the TK-NOG hu-liver mouse model is necessary before broader adoption for drug safety testing.

16.
Artigo em Inglês | MEDLINE | ID: mdl-23348767

RESUMO

BACKGROUND: Inhibin B is a heterodimer glycoprotein that downregulates follicle-stimulating hormone and is produced predominantly by Sertoli cells. The potential correlation between changes in plasma Inhibin B and Sertoli cell toxicity was evaluated in male rats administered testicular toxicants in eight studies. Inhibin B fluctuations over 24 hr were also measured. METHODS: Adult rats were administered one of eight testicular toxicants for 1 to 29 days. The toxicants were DL-ethionine, dibutyl phthalate, nitrofurazone, 2,5-hexanedione, 17-alpha ethinylestradiol, ethane dimethane sulfonate, hexachlorophene, and carbendazim. In a separate study plasma was collected throughout a 24-hr period via an automatic blood sampler. RESULTS: Histomorphologic testicular findings included seminiferous tubule degeneration, round and elongate spermatid degeneration/necrosis, seminiferous tubule vacuolation, aspermatogenesis, and interstitial cell degeneration. There was a varying response of plasma Inhibin B levels to seminiferous tubule toxicity, with three studies showing high correlation, three studies with a response only at a certain time or dose, and two studies with no Inhibin B changes. In a receiver operating characteristics exclusion model analysis, where treated samples without histopathology were excluded, Inhibin B showed a sensitivity of 70% at 90% specificity in studies targeting seminiferous tubule toxicity. CONCLUSION: Decreases in Inhibin B correlated with Sertoli cell toxicity in the majority of studies evaluated, demonstrating the value of Inhibin B as a potential biomarker of testicular toxicity. There was no correlation between decreases in Inhibin B and interstitial cell degeneration. In addition, a pattern of Inhibin B secretion could not be identified over 24 hr.


Assuntos
Poluentes Ambientais/administração & dosagem , Poluentes Ambientais/toxicidade , Inibinas/sangue , Animais , Benzimidazóis/administração & dosagem , Benzimidazóis/toxicidade , Carbamatos/administração & dosagem , Carbamatos/toxicidade , Dibutilftalato/administração & dosagem , Dibutilftalato/toxicidade , Etinilestradiol/administração & dosagem , Etinilestradiol/toxicidade , Etionina/administração & dosagem , Etionina/toxicidade , Hexaclorofeno/administração & dosagem , Hexaclorofeno/toxicidade , Hexanonas/administração & dosagem , Hexanonas/toxicidade , Masculino , Mesilatos/administração & dosagem , Mesilatos/toxicidade , Nitrofurazona/administração & dosagem , Nitrofurazona/toxicidade , Curva ROC , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Testículo/efeitos dos fármacos , Testículo/patologia
17.
Front Neurosci ; 17: 1285359, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38292901

RESUMO

Background: Target organ toxicity is often a reason for attritions in nonclinical and clinical drug development. Leveraging emerging safety biomarkers in nonclinical studies provides an opportunity to monitor such toxicities early and efficiently, potentially translating to early clinical trials. As a part of the European Union's Innovative Medicines Initiative (IMI), two projects have focused on evaluating safety biomarkers of nervous system (NS) toxicity: Translational Safety Biomarker Pipeline (TransBioLine) and Neurotoxicity De-Risking in Preclinical Drug Discovery (NeuroDeRisk). Methods: Performance of fluid-based NS injury biomarker candidates neurofilament light chain (NF-L), glial fibrillary acidic protein (GFAP), neuron specific enolase (NSE) and total Tau in plasma and cerebrospinal fluid (CSF) was evaluated in 15 rat in vivo studies. Model nervous system toxicants as well as other compounds were used to evaluate sensitivity and specificity. Histopathologic assessments of nervous tissues and behavioral observations were conducted to detect and characterize NS injuries. Receiver operator characteristic (ROC) curves were generated to compare the relative performance of the biomarkers in their ability to detect NS injury. Results: NF-L was the best performer in detecting both peripheral nervous system (PNS) and CNS injury in plasma, (AUC of 0.97-0.99; respectively). In CSF, Tau correlated the best with CNS (AUC 0.97), but not PNS injury. NSE and GFAP were suitable for monitoring CNS injury, but with lesser sensitivity. In summary, NF-L is a sensitive and specific biomarker in rats for detecting compound-induced central and peripheral NS injuries. While NF-L measurement alone cannot inform the site of the injury, addition of biomarkers like Tau and NSE and analysis in both blood and CSF can provide additional information about the origin of the NS injury. Conclusion: These results demonstrate the utility of emerging safety biomarkers of drug-induced NS injury in rats and provide additional supporting evidence for biomarker translation across species and potential use in clinical settings to monitor drug-induced NS injury in patients.

18.
Biomed Pharmacother ; 167: 115535, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37738793

RESUMO

Identifying compounds that are neurotoxic either toward the central or the peripheral nervous systems (CNS or PNS) would greatly benefit early stages of drug development by derisking liabilities and selecting safe compounds. Unfortunately, so far assays mostly rely on histopathology findings often identified after repeated-dose toxicity studies in animals. The European NeuroDeRisk project aimed to provide comprehensive tools to identify compounds likely inducing neurotoxicity. As part of this project, the present work aimed to identify diagnostic non-invasive biomarkers of PNS toxicity in mice. We used two neurotoxic drugs in vivo to correlate functional, histopathological and biological findings. CD1 male mice received repeated injections of oxaliplatin or paclitaxel followed by an assessment of drug exposure in CNS/PNS tissues. Functional signs of PNS toxicity were assessed using electronic von Frey and cold paw immersion tests (oxaliplatin), and functional observational battery, rotarod and cold plate tests (paclitaxel). Plasma concentrations of neurofilament light chain (NF-L) and vascular endothelial growth factor A (VEGF-A) were measured, and histopathological evaluations were performed on a comprehensive list of CNS and PNS tissues. Functional PNS toxicity was observed only in oxaliplatin-treated mice. Histopathological findings were observed dose-dependently only in paclitaxel groups. While no changes of VEGF-A concentrations was recorded, NF-L concentrations were increased only in paclitaxel-treated animals as early as 7 days after the onset of drug administration. These results show that plasma NF-L changes correlated with microscopic changes in the PNS, thus strongly suggesting that NF-L could be a sensitive and specific biomarker of PNS toxicity in mice.

19.
Toxicol Sci ; 187(2): 219-233, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35285504

RESUMO

The ability to monitor for general drug-induced tissue injury (DITI) or systemic inflammation in any tissue using blood-based accessible biomarkers would provide a valuable tool in early exploratory animal studies to understand potential drug liabilities. Here we describe the evaluation of 4 biomarkers of tissue remodeling and inflammation (α2-macroglobulin [A2M], α1-acid glycoprotein [AGP], neutrophil gelatinase-associated lipocalin [NGAL], and tissue inhibitor of metalloproteinases [TIMP-1]) as well as the traditional serum parameter albumin as potential blood-based biomarkers of DITI and systemic inflammatory response (SIR). Biomarker performance was assessed in 51 short-term rat in vivo studies with various end-organ toxicities or SIR and receiver operating characteristic curves were generated to compare relative performances. All 4 biomarkers performed well in their ability to detect DITI and SIR with an area under the curve (AUC) of 0.82-0.78, however TIMP-1 achieved the best sensitivity (at 95% specificity) of 61%; AGP, NGAL, and A2M sensitivity was 51%-52%. AUC for albumin was 0.72 with sensitivity of 39%. A2M was the best performer in studies with only SIR (AUC 0.91). In the subset of studies with drug-induced vascular injury, TIMP-1 performed best with an AUC of 0.96. Poor performance of all tested biomarkers was observed in samples with CNS toxicity. In summary, TIMP-1, A2M, AGP, and NGAL demonstrated performance as sensitive accessible biomarkers of DITI and SIR, supporting their potential application as universal accessible tissue toxicity biomarkers to quickly identify dose levels associated with drug-induced injury in early exploratory rat safety and other studies.


Assuntos
Injúria Renal Aguda , alfa 2-Macroglobulinas Associadas à Gravidez , Albuminas , Animais , Biomarcadores , Feminino , Inflamação , Lipocalina-2 , Orosomucoide/metabolismo , Gravidez , Curva ROC , Ratos , Inibidor Tecidual de Metaloproteinase-1
20.
Toxicol Sci ; 181(2): 148-159, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33837425

RESUMO

A new safety testing paradigm that relies on gene expression biomarker panels was developed to easily and quickly identify drug-induced injuries across tissues in rats prior to drug candidate selection. Here, we describe the development, qualification, and implementation of gene expression signatures that diagnose tissue degeneration/necrosis for use in early rat safety studies. Approximately 400 differentially expressed genes were first identified that were consistently regulated across 4 prioritized tissues (liver, kidney, heart, and skeletal muscle), following injuries induced by known toxicants. Hundred of these "universal" genes were chosen for quantitative PCR, and the most consistent and robustly responding transcripts selected, resulting in a final 22-gene set from which unique sets of 12 genes were chosen as optimal for each tissue. The approach was extended across 4 additional tissues (pancreas, gastrointestinal tract, bladder, and testes) where toxicities are less common. Mathematical algorithms were generated to convert each tissue's 12-gene expression values to a single metric, scaled between 0 and 1, and a positive threshold set. For liver, kidney, heart, and skeletal muscle, this was established using a training set of 22 compounds and performance determined by testing a set of approximately 100 additional compounds, resulting in 74%-94% sensitivity and 94%-100% specificity for liver, kidney, and skeletal muscle, and 54%-62% sensitivity and 95%-98% specificity for heart. Similar performance was observed across a set of 15 studies for pancreas, gastrointestinal tract, bladder, and testes. Bundled together, we have incorporated these tissue signatures into a 4-day rat study, providing a rapid assessment of commonly seen compound liabilities to guide selection of lead candidates without the necessity to perform time-consuming histopathologic analyses.


Assuntos
Perfilação da Expressão Gênica , Preparações Farmacêuticas , Animais , Fígado , Ratos , Medição de Risco , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA