Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 183(4): 1043-1057.e15, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-32970989

RESUMO

We show that SARS-CoV-2 spike protein interacts with both cellular heparan sulfate and angiotensin-converting enzyme 2 (ACE2) through its receptor-binding domain (RBD). Docking studies suggest a heparin/heparan sulfate-binding site adjacent to the ACE2-binding site. Both ACE2 and heparin can bind independently to spike protein in vitro, and a ternary complex can be generated using heparin as a scaffold. Electron micrographs of spike protein suggests that heparin enhances the open conformation of the RBD that binds ACE2. On cells, spike protein binding depends on both heparan sulfate and ACE2. Unfractionated heparin, non-anticoagulant heparin, heparin lyases, and lung heparan sulfate potently block spike protein binding and/or infection by pseudotyped virus and authentic SARS-CoV-2 virus. We suggest a model in which viral attachment and infection involves heparan sulfate-dependent enhancement of binding to ACE2. Manipulation of heparan sulfate or inhibition of viral adhesion by exogenous heparin presents new therapeutic opportunities.


Assuntos
Betacoronavirus/fisiologia , Heparitina Sulfato/metabolismo , Peptidil Dipeptidase A/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Sequência de Aminoácidos , Enzima de Conversão de Angiotensina 2 , Betacoronavirus/isolamento & purificação , Sítios de Ligação , COVID-19 , Linhagem Celular , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Heparina/química , Heparina/metabolismo , Heparitina Sulfato/química , Humanos , Rim/metabolismo , Pulmão/metabolismo , Simulação de Dinâmica Molecular , Pandemias , Peptidil Dipeptidase A/química , Pneumonia Viral/patologia , Pneumonia Viral/virologia , Ligação Proteica , Domínios Proteicos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Internalização do Vírus
2.
J Biol Chem ; 298(8): 102159, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35750212

RESUMO

Lysosomal storage diseases result in various developmental and physiological complications, including cachexia. To study the causes for the negative energy balance associated with cachexia, we assessed the impact of sulfamidase deficiency and heparan sulfate storage on energy homeostasis and metabolism in a mouse model of type IIIa mucopolysaccharidosis (MPS IIIa, Sanfilippo A syndrome). At 12-weeks of age, MPS IIIa mice exhibited fasting and postprandial hypertriglyceridemia compared with wildtype mice, with a reduction of white and brown adipose tissues. Partitioning of dietary [3H]triolein showed a marked increase in intestinal uptake and secretion, whereas hepatic production and clearance of triglyceride-rich lipoproteins did not differ from wildtype controls. Uptake of dietary triolein was also elevated in brown adipose tissue (BAT), and notable increases in beige adipose tissue occurred, resulting in hyperthermia, hyperphagia, hyperdipsia, and increased energy expenditure. Furthermore, fasted MPS IIIa mice remained hyperthermic when subjected to low temperature but became cachexic and profoundly hypothermic when treated with a lipolytic inhibitor. We demonstrated that the reliance on increased lipid fueling of BAT was driven by a reduced ability to generate energy from stored lipids within the depot. These alterations arose from impaired autophagosome-lysosome fusion, resulting in increased mitochondria content in beige and BAT. Finally, we show that increased mitochondria content in BAT and postprandial dyslipidemia was partially reversed upon 5-week treatment with recombinant sulfamidase. We hypothesize that increased BAT activity and persistent increases in energy demand in MPS IIIa mice contribute to the negative energy balance observed in patients with MPS IIIa.


Assuntos
Hipertrigliceridemia , Mucopolissacaridose III , Tecido Adiposo Marrom/metabolismo , Animais , Caquexia , Camundongos , Mitofagia , Mucopolissacaridose III/metabolismo , Mucopolissacaridose III/terapia , Trioleína
3.
Metab Eng ; 70: 155-165, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35038554

RESUMO

Heparin is an essential anticoagulant used for treating and preventing thrombosis. However, the complexity of heparin has hindered the development of a recombinant source, making its supply dependent on a vulnerable animal population. In nature, heparin is produced exclusively in mast cells, which are not suitable for commercial production, but mastocytoma cells are readily grown in culture and make heparan sulfate, a closely related glycosaminoglycan that lacks anticoagulant activity. Using gene expression profiling of mast cells as a guide, a multiplex genome engineering strategy was devised to produce heparan sulfate with high anticoagulant potency and to eliminate contaminating chondroitin sulfate from mastocytoma cells. The heparan sulfate purified from engineered cells grown in chemically defined medium has anticoagulant potency that exceeds porcine-derived heparin and confers anticoagulant activity to the blood of healthy mice. This work demonstrates the feasibility of producing recombinant heparin from mammalian cell culture as an alternative to animal sources.


Assuntos
Edição de Genes , Heparina , Animais , Anticoagulantes , Heparitina Sulfato/metabolismo , Camundongos , Suínos
4.
Mol Ther ; 25(12): 2743-2752, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-28958576

RESUMO

Iduronidase (IDUA)-deficient mice accumulate glycosaminoglycans in cells and tissues and exhibit many of the same neuropathological symptoms of patients suffering from Mucopolysaccharidosis I. Intravenous enzyme-replacement therapy for Mucopolysaccharidosis I ameliorates glycosaminoglycan storage and many of the somatic aspects of the disease but fails to treat neurological symptoms due to poor transport across the blood-brain barrier. In this study, we examined the delivery of IDUA conjugated to guanidinoneomycin (GNeo), a molecular transporter. GNeo-IDUA and IDUA injected intravenously resulted in reduced hepatic glycosaminoglycan accumulation but had no effect in the brain due to fast clearance from the circulation. In contrast, intranasally administered GNeo-IDUA entered the brain rapidly. Repetitive intranasal treatment with GNeo-IDUA reduced glycosaminoglycan storage, lysosome size and number, and neurodegenerative astrogliosis in the olfactory bulb and primary somatosensory cortex, whereas IDUA was less effective. The enhanced efficacy of GNeo-IDUA was not the result of increased nose-to-brain delivery or enzyme stability, but rather due to more efficient uptake into neurons and astrocytes. GNeo conjugation also enhanced glycosaminoglycan clearance by intranasally delivered sulfamidase to the brain of sulfamidase-deficient mice, a model of Mucopolysaccharidosis IIIA. These findings suggest the general utility of the guanidinoglycoside-based delivery system for restoring missing lysosomal enzymes in the brain.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Iduronidase/administração & dosagem , Neomicina/administração & dosagem , Administração Intranasal , Animais , Biomarcadores , Encéfalo/patologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Terapia de Reposição de Enzimas , Gliose/metabolismo , Gliose/patologia , Glicosaminoglicanos/metabolismo , Humanos , Hidrolases , Fígado/efeitos dos fármacos , Fígado/metabolismo , Lisossomos , Camundongos , Camundongos Knockout , Neurônios/metabolismo
5.
Glycobiology ; 24(3): 272-80, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24326668

RESUMO

Heparin (HP), an important anticoagulant polysaccharide, is produced in a complex biosynthetic pathway in connective tissue-type mast cells. Both the structure and size of HP are critical factors determining the anticoagulation activity. A murine mastocytoma (MST) cell line was used as a model system to gain insight into this pathway. As reported, MST cells produce a highly sulfated HP-like polysaccharide that lacks anticoagulant activity (Montgomery RI, Lidholt K, Flay NW, Liang J, Vertel B, Lindahl U, Esko JD. 1992. Stable heparin-producing cell lines derived from the Furth murine mastocytoma. Proc Natl Acad Sci USA 89:11327-11331). Here, we show that transfection of MST cells with a retroviral vector containing heparan sulfate 3-O-sulfotransferase-1 (Hs3st1) restores anticoagulant activity. The MST lines express N-acetylglucosamine N-deacetylase/N-sulfotransferase-1, uronosyl 2-O-sulfotransferase and glucosaminyl 6-O-sulfotransferase-1, which are sufficient to make the highly sulfated HP. Overexpression of Hs3st1 in MST-10H cells resulted in a change in the composition of heparan sulfate (HS)/HP and CS/dermatan sulfate (DS) glycosaminoglycans. The cell-associated HS/HP closely resembles HP with 3-O-sulfo group-containing glucosamine residues and shows anticoagulant activity. This study contributes toward a better understanding of the HP biosynthetic pathway with the goal of providing tools to better control the biosynthesis of HP chains with different structures and activities.


Assuntos
Biotecnologia/métodos , Heparina/biossíntese , Sulfotransferases/metabolismo , Animais , Anticoagulantes/química , Configuração de Carboidratos , Linhagem Celular Tumoral , Heparina/química , Mastocitoma/metabolismo , Camundongos , Engenharia de Proteínas/métodos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sulfotransferases/genética
6.
Biology (Basel) ; 12(3)2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36979099

RESUMO

Therapies that target the multicellular pathology of central nervous system (CNS) disease/injury are urgently required. Modified non-anticoagulant heparins mimic the heparan sulphate (HS) glycan family and have been proposed as therapeutics for CNS repair since they are effective regulators of numerous cellular processes. Our in vitro studies have demonstrated that low-sulphated modified heparan sulphate mimetics (LS-mHeps) drive CNS repair. However, LS-mHeps are derived from pharmaceutical heparin purified from pig intestines, in a supply chain at risk of shortages and contamination. Alternatively, cellular synthesis of heparin and HS can be achieved using mammalian cell multiplex genome engineering, providing an alternative source of recombinant HS mimetics (rHS). TEGA Therapeutics (San Diego) have manufactured rHS reagents with varying degrees of sulphation and we have validated their ability to promote repair in vitro using models that mimic CNS injury, making comparisons to LS-mHep7, a previous lead compound. We have shown that like LS-mHep7, low-sulphated rHS compounds promote remyelination and reduce features of astrocytosis, and in contrast, highly sulphated rHS drive neurite outgrowth. Cellular production of heparin mimetics may, therefore, offer potential clinical benefits for CNS repair.

7.
bioRxiv ; 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38045270

RESUMO

Membrane-associated heparan sulfate (HS) proteoglycans (PGs) contribute to the regulation of extracellular cellular signaling cues, such as growth factors (GFs) and chemokines, essential for normal organismal functions and implicated in various pathophysiologies. PGs accomplish this by presenting high affinity binding sites for GFs and their receptors through highly sulfated regions of their HS polysaccharide chains. The composition of HS, and thus GF-binding specificity, are determined during biosynthetic assembly prior to installation at the cell surface. Two extracellular 6- O -endosulfatase enzymes (Sulf-1 and Sulf-2) can uniquely further edit mature HS and alter its interactions with GFs by removing specific sulfation motifs from their recognition sequence on HS. Despite being implicated as signaling regulators during development and in disease, the Sulfs have resisted structural characterization, and their substrate specificity and effects on GF interactions with HS are still poorly defined. Using a panel of PG-mimetics comprising compositionally-defined bioengineered recombinant HS (rHS) substrates in combination with GF binding and enzyme activity assays, we have discovered that Sulfs control GF-HS interactions through a combination of catalytic processing and competitive blocking of high affinity GF-binding sites, providing a new conceptual framework for understanding the functional impact of these enzymes in biological context. Although the contributions from each mechanism are both Sulf- and GF-dependent, the PG-mimetic platform allows for rapid analysis of these complex relationships. Significance Statement: Cells rely on extracellular signals such as growth factors (GFs) to mediate critical biological functions. Membrane-associated proteins bearing negatively charged heparan sulfate (HS) sugar chains engage with GFs and present them to their receptors, which regulates their activity. Two extracellular sulfatase (Sulf) enzymes can edit HS and alter GF interactions and activity, although the precise mechanisms remain unclear. By using chemically defined HS-mimetics as probes, we have discovered that Sulfs can modulate HS by means of catalytic alterations and competitive blocking of GF-binding sites. These unique dual activities distinguish Sulfs from other enzymes and provide clues to their roles in development and disease.

8.
Metab Eng ; 14(2): 81-90, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22326251

RESUMO

Heparin is the most widely used pharmaceutical to control blood coagulation in modern medicine. A health crisis that took place in 2008 led to a demand for production of heparin from non-animal sources. Chinese hamster ovary (CHO) cells, commonly used mammalian host cells for production of foreign pharmaceutical proteins in the biopharmaceutical industry, are capable of producing heparan sulfate (HS), a related polysaccharide naturally. Since heparin and HS share the same biosynthetic pathway, we hypothesized that heparin could be produced in CHO cells by metabolic engineering. Based on the expression of endogenous enzymes in the HS/heparin pathways of CHO-S cells, human N-deacetylase/N-sulfotransferase (NDST2) and mouse heparan sulfate 3-O-sulfotransferase 1 (Hs3st1) genes were transfected sequentially into CHO host cells growing in suspension culture. Transfectants were screened using quantitative RT-PCR and Western blotting. Out of 120 clones expressing NDST2 and Hs3st1, 2 clones, Dual-3 and Dual-29, were selected for further analysis. An antithrombin III (ATIII) binding assay using flow cytometry, designed to recognize a key sugar structure characteristic of heparin, indicated that Hs3st1 transfection was capable of increasing ATIII binding. An anti-factor Xa assay, which affords a measure of anticoagulant activity, showed a significant increase in activity in the dual-expressing cell lines. Disaccharide analysis of the engineered HS showed a substantial increase in N-sulfo groups, but did not show a pattern consistent with pharmacological heparin, suggesting that further balancing the expression of transgenes with the expression levels of endogenous enzymes involved in HS/heparin biosynthesis might be necessary.


Assuntos
Amidoidrolases/biossíntese , Expressão Gênica , Heparina/biossíntese , Engenharia Metabólica , Sulfotransferases/biossíntese , Amidoidrolases/genética , Animais , Células CHO , Cricetinae , Cricetulus , Heparina/genética , Humanos , Camundongos , Sulfotransferases/genética , Transfecção/métodos , Transgenes
9.
ACS Chem Biol ; 17(6): 1534-1542, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35574759

RESUMO

Glycosaminoglycans (GAGs) are a class of highly negatively charged membrane-associated and extracellular matrix polysaccharides involved in the regulation of myriad biological functions, including cell adhesion, migration, signaling, and differentiation, among others. GAGs are typically attached to core proteins, termed proteoglycans (PGs), and can engage >500 binding proteins, making them prominent relays for sensing external stimuli and transducing cellular responses. However, their unique substructural protein-recognition domains that confer their binding specificity remain elusive. While the emergence of glycan arrays has rapidly enabled the profiling of ligand specificities of a range of glycan-binding proteins, their adaptation for the analysis of GAG-binding proteins has been considerably more challenging. Current GAG microarrays primarily employ synthetically defined oligosaccharides, which capture only a fraction of the structural diversity of native GAG polysaccharides. Augmenting existing array platforms to include GAG structures purified from tissues or produced in cells with engineered glycan biosynthetic pathways may significantly advance the understanding of structure-activity relationships in GAG-protein interactions. Here, we demonstrate an efficient and tunable strategy to mimic cellular proteoglycan architectures by conjugating biologically derived GAG chains to a protein scaffold, defined as neoproteoglycans (neoPGs). The use of a reactive fluorogenic linker enabled real-time monitoring of the conjugation reaction efficiency and tuning of the neoPG valency. Immobilization of the reagents on a 96-well array platform allowed for efficient probing of ligand binding and enzyme-substrate specificity, including growth factors and the human sulfatase 1. The neoPGs can also be used directly as soluble probes to evaluate GAG-dependent growth factor signaling in cells.


Assuntos
Glicosaminoglicanos , Proteoglicanas , Adesão Celular , Glicosaminoglicanos/metabolismo , Humanos , Ligantes , Proteoglicanas/química , Proteoglicanas/metabolismo , Transdução de Sinais
10.
Proc Natl Acad Sci U S A ; 105(35): 13075-80, 2008 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-18725627

RESUMO

In a search for small molecule antagonists of heparan sulfate, we examined the activity of bis-2-methyl-4-amino-quinolyl-6-carbamide, also known as surfen. Fluorescence-based titrations indicated that surfen bound to glycosaminoglycans, and the extent of binding increased according to charge density in the order heparin > dermatan sulfate > heparan sulfate > chondroitin sulfate. All charged groups in heparin (N-sulfates, O-sulfates, and carboxyl groups) contributed to binding, consistent with the idea that surfen interacted electrostatically. Surfen neutralized the anticoagulant activity of both unfractionated and low molecular weight heparins and inhibited enzymatic sulfation and degradation reactions in vitro. Addition of surfen to cultured cells blocked FGF2-binding and signaling that depended on cell surface heparan sulfate and prevented both FGF2- and VEGF(165)-mediated sprouting of endothelial cells in Matrigel. Surfen also blocked heparan sulfate-mediated cell adhesion to the Hep-II domain of fibronectin and prevented infection by HSV-1 that depended on glycoprotein D interaction with heparan sulfate. These findings demonstrate the feasibility of identifying small molecule antagonists of heparan sulfate and raise the possibility of developing pharmacological agents to treat disorders that involve glycosaminoglycan-protein interactions.


Assuntos
Heparitina Sulfato/antagonistas & inibidores , Ureia/análogos & derivados , Animais , Células CHO , Adesão Celular/efeitos dos fármacos , Cricetinae , Cricetulus , Fator Xa/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Glicosaminoglicanos/metabolismo , Heparina Liase/metabolismo , Heparina de Baixo Peso Molecular/metabolismo , Herpesvirus Humano 1/metabolismo , Humanos , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Testes de Neutralização , Transdução de Sinais/efeitos dos fármacos , Soluções , Sulfotransferases/metabolismo , Enxofre/metabolismo , Suínos , Ureia/química , Ureia/farmacologia
11.
bioRxiv ; 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32699853

RESUMO

We show that SARS-CoV-2 spike protein interacts with cell surface heparan sulfate and angiotensin converting enzyme 2 (ACE2) through its Receptor Binding Domain. Docking studies suggest a putative heparin/heparan sulfate-binding site adjacent to the domain that binds to ACE2. In vitro, binding of ACE2 and heparin to spike protein ectodomains occurs independently and a ternary complex can be generated using heparin as a template. Contrary to studies with purified components, spike protein binding to heparan sulfate and ACE2 on cells occurs codependently. Unfractionated heparin, non-anticoagulant heparin, treatment with heparin lyases, and purified lung heparan sulfate potently block spike protein binding and infection by spike protein-pseudotyped virus and SARS-CoV-2 virus. These findings support a model for SARS-CoV-2 infection in which viral attachment and infection involves formation of a complex between heparan sulfate and ACE2. Manipulation of heparan sulfate or inhibition of viral adhesion by exogenous heparin may represent new therapeutic opportunities.

12.
J Neuropathol Exp Neurol ; 66(1): 75-85, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17204939

RESUMO

In response to oxidative stress, the nuclear factor E2-related factor 2 (Nrf2) transcription factor translocates from the cytoplasm into the nucleus and transactivates expression of genes with antioxidant activity. Despite this cellular mechanism, oxidative damage is abundant in Alzheimer and Parkinson disease (AD and PD). To investigate mechanisms by which Nrf2 activity may be aberrant or insufficient in neurodegenerative conditions, we assessed Nrf2 localization in affected brain regions of AD, Lewy body variant of AD (LBVAD), and PD. By immunohistochemistry, Nrf2 is expressed in both the nucleus and the cytoplasm of neurons in normal hippocampi with predominant expression in the nucleus. In AD and LBVAD, Nrf2 was predominantly cytoplasmic in hippocampal neurons and was not a major component of beta amyloid plaques or neurofibrillary tangles. By immunoblotting, we observed a significant decrease in nuclear Nrf2 levels in AD cases. In contrast, Nrf2 was strongly nuclear in PD nigral neurons but cytoplasmic in substantia nigra of normal, AD, and LBVAD cases. These findings suggest that Nrf2-mediated transcription is not induced in neurons in AD despite the presence of oxidative stress. In PD, nuclear localization of Nrf2 is strongly induced, but this response may be insufficient to protect neurons from degeneration.


Assuntos
Expressão Gênica/fisiologia , Fator 2 Relacionado a NF-E2/metabolismo , Doenças Neurodegenerativas/metabolismo , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Imuno-Histoquímica/métodos , Microscopia Confocal/métodos , Pessoa de Meia-Idade , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/fisiopatologia , Neurônios/metabolismo , Neurônios/patologia , Mudanças Depois da Morte , Substância Negra/metabolismo , Substância Negra/patologia
13.
Schizophr Res ; 93(1-3): 237-44, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17433628

RESUMO

OBJECTIVE: We previously reported that men with schizophrenia had reduced volumes of the posterior nasal cavity bilaterally. Since the nasal cavities develop in conjunction with both the palate and ventral forebrain, this could represent a simple marker of embryological dysmorphogenesis contributing to schizophrenia. The current study expands on this finding by examining a larger sample of both male and female patients and unaffected 1st-degree relatives, to determine the gender distribution of this abnormality and the extent to which it may be genetically mediated. METHOD: A measurement of nasal volume and geometry was acquired by acoustic rhinometry for 85 schizophrenia patients, 25 unaffected 1st-degree relatives of schizophrenia probands and 66 healthy comparison subjects. RESULTS: Male patients had smaller posterior nasal volumes than both male control subjects and male relatives. However, female patients did not differ from either female controls or female family members. Unaffected 1st-degree relatives did not differ from same-sex control subjects. These findings persisted after covarying for height and smoking history, and were unrelated to clinical symptomatology or antipsychotic medication usage. CONCLUSION: Posterior nasal cavity volume decrement appears to be a specific developmental craniofacial abnormality that may reflect an early disruption in embryological development in males with schizophrenia. Although further study is needed, this may be a marker of a "second hit" that distinguishes genetically vulnerable men who go on to develop the illness from those who do not.


Assuntos
Cavidade Nasal/anormalidades , Rinometria Acústica , Esquizofrenia/diagnóstico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Predisposição Genética para Doença/genética , Humanos , Masculino , Pennsylvania , Escalas de Graduação Psiquiátrica , Valores de Referência , Fatores de Risco , Esquizofrenia/genética , Fatores Sexuais
14.
Clin Cancer Res ; 12(9): 2894-901, 2006 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-16675586

RESUMO

PURPOSE: The binding of hematogenously borne malignant cells that express the carbohydrate sialyl Lewis X (sLe(X)) to selectin adhesion receptors on leukocytes, platelets, and endothelial cells facilitates metastasis. The glycosylation inhibitor, per-O-acetylated GlcNAcbeta1,3Galbeta-O-naphthalenemethanol (AcGnG-NM), inhibits the biosynthesis of sLe(X) in tumor cells. To evaluate the efficacy of AcGnG-NM as an antimetastatic agent, we examined its effect on experimental metastasis and on spontaneous hematogenous dissemination of murine Lewis lung carcinoma and B16BL6 melanoma cells. EXPERIMENTAL DESIGN: Tumor cells were treated in vitro with AcGnG-NM, and the degree of selectin ligand inhibition and experimental metastasis was analyzed in wild-type and P-selectin-deficient mice. Conditions were developed for systemic administration of AcGnG-NM, and the presence of tumor cells in the lungs was assessed using bromodeoxyuridine labeling in vivo. The effect of AcGnG-NM on inflammation was examined using an acute peritonitis model. RESULTS: In vitro treatment of Lewis lung carcinoma cells with AcGnG-NM reduced expression of sLe(X)- and P-selectin-dependent cell adhesion to plates coated with P-selectin. Treatment also reduced formation of lung foci when cells were injected into syngeneic mice. Systemic administration of the disaccharide significantly inhibited spontaneous dissemination of the cells to the lungs from a primary s.c. tumor, whereas an acetylated disaccharide not related to sLe(X) in structure had no effect. AcGnG-NM did not alter the level of circulating leukocytes or platelets, the expression of P-selectin ligands on neutrophils, or sLe(X)-dependent inflammation. CONCLUSION: Taken together, these data show that AcGnG-NM provides a targeted glycoside-based therapy for the treatment of hematogenous dissemination of tumor cells.


Assuntos
Dissacarídeos/uso terapêutico , Glicosilação/efeitos dos fármacos , Melanoma Experimental/patologia , Metástase Neoplásica/prevenção & controle , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Dissacarídeos/química , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA