Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 17(9): e1008380, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34478440

RESUMO

For various species, high quality sequences and complete genomes are nowadays available for many individuals. This makes data analysis challenging, as methods need not only to be accurate, but also time efficient given the tremendous amount of data to process. In this article, we introduce an efficient method to infer the evolutionary history of individuals under the multispecies coalescent model in networks (MSNC). Phylogenetic networks are an extension of phylogenetic trees that can contain reticulate nodes, which allow to model complex biological events such as horizontal gene transfer, hybridization and introgression. We present a novel way to compute the likelihood of biallelic markers sampled along genomes whose evolution involved such events. This likelihood computation is at the heart of a Bayesian network inference method called SnappNet, as it extends the Snapp method inferring evolutionary trees under the multispecies coalescent model, to networks. SnappNet is available as a package of the well-known beast 2 software. Recently, the MCMC_BiMarkers method, implemented in PhyloNet, also extended Snapp to networks. Both methods take biallelic markers as input, rely on the same model of evolution and sample networks in a Bayesian framework, though using different methods for computing priors. However, SnappNet relies on algorithms that are exponentially more time-efficient on non-trivial networks. Using simulations, we compare performances of SnappNet and MCMC_BiMarkers. We show that both methods enjoy similar abilities to recover simple networks, but SnappNet is more accurate than MCMC_BiMarkers on more complex network scenarios. Also, on complex networks, SnappNet is found to be extremely faster than MCMC_BiMarkers in terms of time required for the likelihood computation. We finally illustrate SnappNet performances on a rice data set. SnappNet infers a scenario that is consistent with previous results and provides additional understanding of rice evolution.


Assuntos
Cadeias de Markov , Método de Monte Carlo , Filogenia , Algoritmos , Teorema de Bayes , Biologia Computacional/métodos , Evolução Molecular , Genes de Plantas , Funções Verossimilhança , Oryza/classificação , Oryza/genética
2.
Plant J ; 102(5): 1008-1025, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31930580

RESUMO

Hybridizations between closely related species commonly occur in the domestication process of many crops. Banana cultivars are derived from such hybridizations between species and subspecies of the Musa genus that have diverged in various tropical Southeast Asian regions and archipelagos. Among the diploid and triploid hybrids generated, those with seedless parthenocarpic fruits were selected by humans and thereafter dispersed through vegetative propagation. Musa acuminata subspecies contribute to most of these cultivars. We analyzed sequence data from 14 M. acuminata wild accessions and 10 M. acuminata-based cultivars, including diploids and one triploid, to characterize the ancestral origins along their chromosomes. We used multivariate analysis and single nucleotide polymorphism clustering and identified five ancestral groups as contributors to these cultivars. Four of these corresponded to known M. acuminata subspecies. A fifth group, found only in cultivars, was defined based on the 'Pisang Madu' cultivar and represented two uncharacterized genetic pools. Diverse ancestral contributions along cultivar chromosomes were found, resulting in mosaics with at least three and up to five ancestries. The commercially important triploid Cavendish banana cultivar had contributions from at least one of the uncharacterized genetic pools and three known M. acuminata subspecies. Our results highlighted that cultivated banana origins are more complex than expected - involving multiple hybridization steps - and also that major wild banana ancestors have yet to be identified. This study revealed the extent to which admixture has framed the evolution and domestication of a crop plant.


Assuntos
Genoma de Planta/genética , Musa/genética , Cromossomos de Plantas/genética , Produtos Agrícolas/genética , Hibridização Genética/genética
3.
Ann Bot ; 127(6): 827-840, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33637991

RESUMO

BACKGROUND AND AIMS: Modern sugarcane cultivars (Saccharum spp.) are high polyploids, aneuploids (2n = ~12x = ~120) derived from interspecific hybridizations between the domesticated sweet species Saccharum officinarum and the wild species S. spontaneum. METHODS: To analyse the architecture and origin of such a complex genome, we analysed the sequences of all 12 hom(oe)ologous haplotypes (BAC clones) from two distinct genomic regions of a typical modern cultivar, as well as the corresponding sequence in Miscanthus sinense and Sorghum bicolor, and monitored their distribution among representatives of the Saccharum genus. KEY RESULTS: The diversity observed among haplotypes suggested the existence of three founding genomes (A, B, C) in modern cultivars, which diverged between 0.8 and 1.3 Mya. Two genomes (A, B) were contributed by S. officinarum; these were also found in its wild presumed ancestor S. robustum, and one genome (C) was contributed by S. spontaneum. These results suggest that S. officinarum and S. robustum are derived from interspecific hybridization between two unknown ancestors (A and B genomes). The A genome contributed most haplotypes (nine or ten) while the B and C genomes contributed one or two haplotypes in the regions analysed of this typical modern cultivar. Interspecific hybridizations likely involved accessions or gametes with distinct ploidy levels and/or were followed by a series of backcrosses with the A genome. The three founding genomes were found in all S. barberi, S. sinense and modern cultivars analysed. None of the analysed accessions contained only the A genome or the B genome, suggesting that representatives of these founding genomes remain to be discovered. CONCLUSIONS: This evolutionary model, which combines interspecificity and high polyploidy, can explain the variable chromosome pairing affinity observed in Saccharum. It represents a major revision of the understanding of Saccharum diversity.


Assuntos
Saccharum , Genoma de Planta/genética , Genômica , Haplótipos/genética , Poliploidia , Saccharum/genética
4.
Genome ; 58(1): 1-11, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25973616

RESUMO

Kava (Piper methysticum) is a major cash crop in the Pacific. The aim of this study was to assess genetic variation among 103 accessions of kava using SSRs and DArTs. Genetic structure was determined using clustering analyses (WPGMA) and principal coordinate analyses (PCA). Thirteen SSR primers and 75 DArT markers were found polymorphic, and the two types of markers generated similar clustering patterns. Genetic distances ranged from 0 to 0.65 with an average of 0.24 using SSRs and from 0 to 0.64 with an average of 0.24 using DArT. Eleven genotypes were identified with SSR while 28 genotypes were identified with DArT markers. By combining the two sets of markers, a total of only 30 distinct genotypes were observed. In the Vanuatu archipelago, noble cultivars originating from different islands clustered together within a very narrow genetic base despite their diversity of morphotypes. SSR and DArT fingerprints allowed the identification of kava cultivars unsuitable for consumption, so called two-days, and clearly differentiated the wild types classified as P. methysticum var. wichmannii from the cultivars as var. methysticum. Molecular data reveals that all noble cultivars evolved by the predominance of clonal selection. Although they are represented by clearly distinct morphotypes, these cultivars are genetically vulnerable and their potential to adapt to forthcoming changes is limited. These newly developed markers provide high resolution and will be useful for kava diversity analyses and quality assessment.


Assuntos
DNA de Plantas/análise , Variação Genética , Kava/genética , Repetições de Microssatélites , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise por Conglomerados , Evolução Molecular , Efeito Fundador , Marcadores Genéticos/genética , Genótipo , Kava/classificação , Análise de Componente Principal , Seleção Genética
5.
Rice (N Y) ; 16(1): 12, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36853402

RESUMO

BACKGROUND: Asian rice Oryza sativa, first domesticated in East Asia, has considerable success in African fields. When and where this introduction occurred is unclear. Rice varieties of Asian origin may have evolved locally during and after migration to Africa, resulting in unique adaptations, particularly in relation to upland cultivation as frequently practiced in Africa. METHODS: We investigated the genetic differentiation between Asian and African varieties using the 3000 Rice Genomes SNP dataset. African upland cultivars were first characterized using principal component analysis among 292 tropical Japonica accessions from Africa and Asia. The particularities of African accessions were then explored using two inference techniques, PCA-KDE for supervised classification and chromosome painting, and ELAI for individual allelic dosage monitoring. KEY RESULTS: Ambiguities of local differentiation between Japonica and other groups pointed at genomic segments that potentially resulted from genetic exchange. Those specific to West African upland accessions were concentrated on chromosome 6 and featured several cAus introgression signals, including a large one between 17.9 and 21.7 Mb. We found iHS statistics in support of positive selection in this region and we provide a list of candidate genes enriched in GO terms that have regulatory functions involved in stress responses that could have facilitated adaptation to harsh upland growing conditions.

6.
Rice (N Y) ; 16(1): 7, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36752880

RESUMO

BACKGROUND: Assessing the performance of elite lines in target environments is essential for breeding programs to select the most relevant genotypes. One of the main complexities in this task resides in accounting for the genotype by environment interactions. Genomic prediction models that integrate information from multi-environment trials and environmental covariates can be efficient tools in this context. The objective of this study was to assess the predictive ability of different genomic prediction models to optimize the use of multi-environment information. We used 111 elite breeding lines representing the diversity of the international rice research institute breeding program for irrigated ecosystems. The lines were evaluated for three traits (days to flowering, plant height, and grain yield) in 15 environments in Asia and Africa and genotyped with 882 SNP markers. We evaluated the efficiency of genomic prediction to predict untested environments using seven multi-environment models and three cross-validation scenarios. RESULTS: The elite lines were found to belong to the indica group and more specifically the indica-1B subgroup which gathered improved material originating from the Green Revolution. Phenotypic correlations between environments were high for days to flowering and plant height (33% and 54% of pairwise correlation greater than 0.5) but low for grain yield (lower than 0.2 in most cases). Clustering analyses based on environmental covariates separated Asia's and Africa's environments into different clusters or subclusters. The predictive abilities ranged from 0.06 to 0.79 for days to flowering, 0.25-0.88 for plant height, and - 0.29-0.62 for grain yield. We found that models integrating genotype-by-environment interaction effects did not perform significantly better than models integrating only main effects (genotypes and environment or environmental covariates). The different cross-validation scenarios showed that, in most cases, the use of all available environments gave better results than a subset. CONCLUSION: Multi-environment genomic prediction models with main effects were sufficient for accurate phenotypic prediction of elite lines in targeted environments. These results will help refine the testing strategy to update the genomic prediction models to improve predictive ability.

7.
BMC Plant Biol ; 12: 26, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22340522

RESUMO

BACKGROUND: Polyploidy can result in genetic bottlenecks, especially for species of monophyletic origin. Cultivated peanut is an allotetraploid harbouring limited genetic diversity, likely resulting from the combined effects of its single origin and domestication. Peanut wild relatives represent an important source of novel alleles that could be used to broaden the genetic basis of the cultigen. Using an advanced backcross population developed with a synthetic amphidiploid as donor of wild alleles, under two water regimes, we conducted a detailed QTL study for several traits involved in peanut productivity and adaptation as well as domestication. RESULTS: A total of 95 QTLs were mapped in the two water treatments. About half of the QTL positive effects were associated with alleles of the wild parent and several QTLs involved in yield components were specific to the water-limited treatment. QTLs detected for the same trait mapped to non-homeologous genomic regions, suggesting differential control in subgenomes as a consequence of polyploidization. The noteworthy clustering of QTLs for traits involved in seed and pod size and in plant and pod morphology suggests, as in many crops, that a small number of loci have contributed to peanut domestication. CONCLUSION: In our study, we have identified QTLs that differentiated cultivated peanut from its wild relatives as well as wild alleles that contributed positive variation to several traits involved in peanut productivity and adaptation. These findings offer novel opportunities for peanut improvement using wild relatives.


Assuntos
Arachis/genética , Mapeamento Cromossômico/métodos , Locos de Características Quantitativas/genética , Alelos , Cruzamentos Genéticos , Poliploidia
8.
Am J Bot ; 99(6): e245-50, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22645098

RESUMO

PREMISE OF THE STUDY: Discrepancies in terms of genotyping data are frequently observed when comparing simple sequence repeat (SSR) data sets across genotyping technologies and laboratories. This technical concern introduces biases that hamper any synthetic studies or comparison of genetic diversity between collections. To prevent this for Sorghum bicolor, we developed a control kit of 48 SSR markers. METHODS AND RESULTS: One hundred seventeen markers were selected along the genome to provide coverage across the length of all 10 sorghum linkage groups. They were tested for polymorphism and reproducibility across two laboratories (Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement [CIRAD], France, and International Crops Research Institute for the Semi-Arid Tropics [ICRISAT], India) using two commonly used genotyping technologies (polyacrylamide gel-based technology with LI-COR sequencing machines and capillary systems with ABI sequencing apparatus) with DNA samples from a diverse set of 48 S. bicolor accessions. CONCLUSIONS: A kit for diversity analysis (http://sat.cirad.fr/sat/sorghum_SSR_kit/) was developed. It contains information on 48 technically robust sorghum microsatellite markers and 10 DNA controls. It can further be used to calibrate sorghum SSR genotyping data acquired with different technologies and compare those to genetic diversity references.


Assuntos
Variação Genética , Técnicas de Genotipagem/métodos , Repetições de Microssatélites/genética , Sorghum/genética , Alelos , Primers do DNA/genética , DNA de Plantas/química , DNA de Plantas/genética , Genótipo , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Polimorfismo Genético , Análise de Sequência de DNA , Sorghum/classificação , Especificidade da Espécie
9.
New Phytol ; 189(2): 629-42, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21039564

RESUMO

Modern sugarcane (Saccharum spp.) is the leading sugar crop and a primary energy crop. It has the highest level of 'vertical' redundancy (2n=12x=120) of all polyploid plants studied to date. It was produced about a century ago through hybridization between two autopolyploid species, namely S. officinarum and S. spontaneum. In order to investigate the genome dynamics in this highly polyploid context, we sequenced and compared seven hom(oe)ologous haplotypes (bacterial artificial chromosome clones). Our analysis revealed a high level of gene retention and colinearity, as well as high gene structure and sequence conservation, with an average sequence divergence of 4% for exons. Remarkably, all of the hom(oe)ologous genes were predicted as being functional (except for one gene fragment) and showed signs of evolving under purifying selection, with the exception of genes within segmental duplications. By contrast, transposable elements displayed a general absence of colinearity among hom(oe)ologous haplotypes and appeared to have undergone dynamic expansion in Saccharum, compared with sorghum, its close relative in the Andropogonea tribe. These results reinforce the general trend emerging from recent studies indicating the diverse and nuanced effect of polyploidy on genome dynamics.


Assuntos
Sequência Conservada/genética , Poliploidia , Saccharum/genética , Homologia de Sequência do Ácido Nucleico , Alelos , Cromossomos Artificiais Bacterianos/genética , Elementos de DNA Transponíveis/genética , Genes de Plantas/genética , Haplótipos/genética , Anotação de Sequência Molecular , Oryza/genética , Filogenia , Análise de Sequência de DNA , Sorghum/genética , Sintenia/genética
10.
BMC Plant Biol ; 10: 65, 2010 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-20388207

RESUMO

BACKGROUND: The genus Musa is a large species complex which includes cultivars at diploid and triploid levels. These sterile and vegetatively propagated cultivars are based on the A genome from Musa acuminata, exclusively for sweet bananas such as Cavendish, or associated with the B genome (Musa balbisiana) in cooking bananas such as Plantain varieties. In M. acuminata cultivars, structural heterozygosity is thought to be one of the main causes of sterility, which is essential for obtaining seedless fruits but hampers breeding. Only partial genetic maps are presently available due to chromosomal rearrangements within the parents of the mapping populations. This causes large segregation distortions inducing pseudo-linkages and difficulties in ordering markers in the linkage groups. The present study aims at producing a saturated linkage map of M. acuminata, taking into account hypotheses on the structural heterozygosity of the parents. RESULTS: An F1 progeny of 180 individuals was obtained from a cross between two genetically distant accessions of M. acuminata, 'Borneo' and 'Pisang Lilin' (P. Lilin). Based on the gametic recombination of each parent, two parental maps composed of SSR and DArT markers were established. A significant proportion of the markers (21.7%) deviated (p < 0.05) from the expected Mendelian ratios. These skewed markers were distributed in different linkage groups for each parent. To solve some complex ordering of the markers on linkage groups, we associated tools such as tree-like graphic representations, recombination frequency statistics and cytogenetical studies to identify structural rearrangements and build parsimonious linkage group order. An illustration of such an approach is given for the P. Lilin parent. CONCLUSIONS: We propose a synthetic map with 11 linkage groups containing 489 markers (167 SSRs and 322 DArTs) covering 1197 cM. This first saturated map is proposed as a "reference Musa map" for further analyses. We also propose two complete parental maps with interpretations of structural rearrangements localized on the linkage groups. The structural heterozygosity in P. Lilin is hypothesized to result from a duplication likely accompanied by an inversion on another chromosome. This paper also illustrates a methodological approach, transferable to other species, to investigate the mapping of structural rearrangements and determine their consequences on marker segregation.


Assuntos
Mapeamento Cromossômico , Rearranjo Gênico/genética , Genoma de Planta/genética , Repetições de Microssatélites/genética , Musa/genética , Pareamento Cromossômico/genética , Segregação de Cromossomos/genética , Simulação por Computador , Cruzamentos Genéticos , Escore Lod , Meiose/genética , Musa/citologia , Filogenia , Polimorfismo Genético
11.
Theor Appl Genet ; 121(4): 769-87, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20454772

RESUMO

Asr (ABA, stress, ripening) genes represent a small gene family potentially involved in drought tolerance in several plant species. To analyze their interest for rice breeding for water-limited environments, this gene family was characterized further. Genomic organization of the gene family reveals six members located on four different chromosomes and with the same exon-intron structure. The maintenance of six members of the Asr gene family, which are the result of combination between tandem duplication and whole genome duplication, and their differential regulation under water stress, involves probably some sub-functionalization. The polymorphism of four members was studied in a worldwide collection of 204 accessions of Oryza sativa L. and 14 accessions of wild relatives (O. rufipogon and O. nivara). The nucleotide diversity of the Asr genes was globally low, but contrasted for the different genes, leading to different shapes of haplotype networks. Statistical tests for neutrality were used and compared to their distribution in a set of 111 reference genes spread across the genome, derived from another published study. Asr3 diversity exhibited a pattern concordant with a balancing selection at the species level and with a directional selection in the tropical japonica sub-group. This study provides a thorough description of the organization of the Asr family, and the nucleotide and haplotype diversity of four Asr in Oryza sativa species. Asr3 stood out as the best potential candidate. The polymorphism detected here represents a first step towards an association study between genetic polymorphisms of this gene family and variation in drought tolerance traits.


Assuntos
Adaptação Fisiológica/genética , Alelos , Secas , Genes de Plantas/genética , Variação Genética , Oryza/genética , Seleção Genética , Sequência de Aminoácidos , Sequência de Bases , Éxons/genética , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Haplótipos/genética , Íntrons/genética , Dados de Sequência Molecular , Família Multigênica/genética , Oryza/fisiologia , Folhas de Planta/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Água
12.
G3 (Bethesda) ; 10(2): 569-579, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31862786

RESUMO

Hybridizations between species and subspecies represented major steps in the history of many crop species. Such events generally lead to genomes with mosaic patterns of chromosomal segments of various origins that may be assessed by local ancestry inference methods. However, these methods have mainly been developed in the context of human population genetics with implicit assumptions that may not always fit plant models. The purpose of this study was to evaluate the suitability of three state-of-the-art inference methods (SABER, ELAI and WINPOP) for local ancestry inference under scenarios that can be encountered in plant species. For this, we developed an R package to simulate genotyping data under such scenarios. The tested inference methods performed similarly well as far as representatives of source populations were available. As expected, the higher the level of differentiation between ancestral source populations and the lower the number of generations since admixture, the more accurate were the results. Interestingly, the accuracy of the methods was only marginally affected by i) the number of ancestries (up to six tested); ii) the sample design (i.e., unbalanced representation of source populations); and iii) the reproduction mode (e.g., selfing, vegetative propagation). If a source population was not represented in the data set, no bias was observed in inference accuracy for regions originating from represented sources and regions from the missing source were assigned differently depending on the methods. Overall, the selected ancestry inference methods may be used for crop plant analysis if all ancestral sources are known.


Assuntos
Produtos Agrícolas/genética , Evolução Molecular , Genoma de Planta , Genômica , Algoritmos , Genômica/métodos , Humanos , Modelos Genéticos , Reprodutibilidade dos Testes , Software
13.
BMC Plant Biol ; 9: 103, 2009 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-19650911

RESUMO

BACKGROUND: Peanut (Arachis hypogaea L.) is widely used as a food and cash crop around the world. It is considered to be an allotetraploid (2n = 4x = 40) originated from a single hybridization event between two wild diploids. The most probable hypothesis gave A. duranensis as the wild donor of the A genome and A. ipaënsis as the wild donor of the B genome. A low level of molecular polymorphism is found in cultivated germplasm and up to date few genetic linkage maps have been published. The utilization of wild germplasm in breeding programs has received little attention due to the reproductive barriers between wild and cultivated species and to the technical difficulties encountered in making large number of crosses. We report here the development of a SSR based genetic map and the analysis of genome-wide segment introgressions into the background of a cultivated variety through the utilization of a synthetic amphidiploid between A. duranensis and A. ipaënsis. RESULTS: Two hundred ninety eight (298) loci were mapped in 21 linkage groups (LGs), spanning a total map distance of 1843.7 cM with an average distance of 6.1 cM between adjacent markers. The level of polymorphism observed between the parent of the amphidiploid and the cultivated variety is consistent with A. duranensis and A. ipaënsis being the most probable donor of the A and B genomes respectively. The synteny analysis between the A and B genomes revealed an overall good collinearity of the homeologous LGs. The comparison with the diploid and tetraploid maps shed new light on the evolutionary forces that contributed to the divergence of the A and B genome species and raised the question of the classification of the B genome species. Structural modifications such as chromosomal segment inversions and a major translocation event prior to the tetraploidisation of the cultivated species were revealed. Marker assisted selection of BC1F1 and then BC2F1 lines carrying the desirable donor segment with the best possible return to the background of the cultivated variety provided a set of lines offering an optimal distribution of the wild introgressions. CONCLUSION: The genetic map developed, allowed the synteny analysis of the A and B genomes, the comparison with diploid and tetraploid maps and the analysis of the introgression segments from the wild synthetic into the background of a cultivated variety. The material we have produced in this study should facilitate the development of advanced backcross and CSSL breeding populations for the improvement of cultivated peanut.


Assuntos
Arachis/genética , Mapeamento Cromossômico , Genoma de Planta , Sintenia , Cromossomos de Plantas , DNA de Plantas/genética , Repetições de Microssatélites , Filogenia , Polimorfismo Genético , Poliploidia , Análise de Sequência de DNA
14.
Genetics ; 180(1): 649-60, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18757946

RESUMO

The genome of modern sugarcane cultivars is highly polyploid (approximately 12x), aneuploid, of interspecific origin, and contains 10 Gb of DNA. Its size and complexity represent a major challenge for the isolation of agronomically important genes. Here we report on the first attempt to isolate a gene from sugarcane by map-based cloning, targeting a durable major rust resistance gene (Bru1). We describe the genomic strategies that we have developed to overcome constraints associated with high polyploidy in the successive steps of map-based cloning approaches, including diploid/polyploid syntenic shuttle mapping with two model diploid species (sorghum and rice) and haplotype-specific chromosome walking. Their applications allowed us (i) to develop a high-resolution map including markers at 0.28 and 0.14 cM on both sides and 13 markers cosegregating with Bru1 and (ii) to develop a physical map of the target haplotype that still includes two gaps at this stage due to the discovery of an insertion specific to this haplotype. These approaches will pave the way for the development of future map-based cloning approaches for sugarcane and other complex polyploid species.


Assuntos
Diploide , Genes de Plantas , Poliploidia , Saccharum/genética , Aneuploidia , Passeio de Cromossomo , Cromossomos Artificiais Bacterianos , Clonagem Molecular , Marcadores Genéticos , Haplótipos , Modelos Genéticos , Oryza/genética , Mapeamento Físico do Cromossomo , Doenças das Plantas/genética , Sorghum/genética
15.
Theor Appl Genet ; 119(6): 1093-103, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19693484

RESUMO

Diversity Arrays Technology (DArT) is a DNA hybridisation-based molecular marker technique that can detect simultaneously variation at numerous genomic loci without sequence information. This efficiency makes it a potential tool for a quick and powerful assessment of the structure of germplasm collections. This article demonstrates the usefulness of DArT markers for genetic diversity analyses of Musa spp. genotypes. We developed four complexity reduction methods to generate DArT genomic representations and we tested their performance using 48 reference Musa genotypes. For these four complexity reduction methods, DArT markers displayed high polymorphism information content. We selected the two methods which generated the most polymorphic genomic representations (PstI/BstNI 16.8%, PstI/TaqI 16.1%) to analyze a panel of 168 Musa genotypes from two of the most important field collections of Musa in the world: Cirad (Neufchateau, Guadeloupe), and IITA (Ibadan, Nigeria). Since most edible cultivars are derived from two wild species, Musa acuminata (A genome) and Musa balbisiana (B genome), the study is restricted mostly to accessions of these two species and those derived from them. The genomic origin of the markers can help resolving the pedigree of valuable genotypes of unknown origin. A total of 836 markers were identified and used for genotyping. Ten percent of them were specific to the A genome and enabled targeting this genome portion in relatedness analysis among diverse ploidy constitutions. DArT markers revealed genetic relationships among Musa genotype consistent with those provided by the other markers technologies, but at a significantly higher resolution and speed and reduced cost.


Assuntos
DNA de Plantas/genética , Genoma de Planta , Musa/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Evolução Biológica , DNA de Plantas/isolamento & purificação , Diploide , Marcadores Genéticos , Variação Genética , Genótipo , Guadalupe , Hibridização Genética , Nigéria , Polimorfismo Genético , Poliploidia , Análise de Sequência de DNA , Especificidade da Espécie
16.
Genome Biol Evol ; 11(5): 1358-1373, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31002105

RESUMO

Modern rice cultivars are adapted to a range of environmental conditions and human preferences. At the root of this diversity is a marked genetic structure, owing to multiple foundation events. Admixture and recurrent introgression from wild sources have played upon this base to produce the myriad adaptations existing today. Genome-wide studies bring support to this idea, but understanding the history and nature of particular genetic adaptations requires the identification of specific patterns of genetic exchange. In this study, we explore the patterns of haplotype similarity along the genomes of a subset of rice cultivars available in the 3,000 Rice Genomes data set. We begin by establishing a custom method of classification based on a combination of dimensionality reduction and kernel density estimation. Through simulations, the behavior of this classifier is studied under scenarios of varying genetic divergence, admixture, and alien introgression. Finally, the method is applied to local haplotypes along the genome of a Core set of Asian Landraces. Taking the Japonica, Indica, and cAus groups as references, we find evidence of reciprocal introgressions covering 2.6% of reference genomes on average. Structured signals of introgression among reference accessions are discussed. We extend the analysis to elucidate the genetic structure of the group circum-Basmati: we delimit regions of Japonica, cAus, and Indica origin, as well as regions outlier to these groups (13% on average). Finally, the approach used highlights regions of partial to complete loss of structure that can be attributed to selective pressures during domestication.


Assuntos
Genoma de Planta , Oryza/genética , Ásia , Domesticação , Haplótipos , Hibridização Genética , Oryza/classificação
17.
BMC Genomics ; 9: 58, 2008 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-18234080

RESUMO

BACKGROUND: Musa species (Zingiberaceae, Zingiberales) including bananas and plantains are collectively the fourth most important crop in developing countries. Knowledge concerning Musa genome structure and the origin of distinct cultivars has greatly increased over the last few years. Until now, however, no large-scale analyses of Musa genomic sequence have been conducted. This study compares genomic sequence in two Musa species with orthologous regions in the rice genome. RESULTS: We produced 1.4 Mb of Musa sequence from 13 BAC clones, annotated and analyzed them along with 4 previously sequenced BACs. The 443 predicted genes revealed that Zingiberales genes share GC content and distribution characteristics with eudicot and Poaceae genomes. Comparison with rice revealed microsynteny regions that have persisted since the divergence of the Commelinid orders Poales and Zingiberales at least 117 Mya. The previously hypothesized large-scale duplication event in the common ancestor of major cereal lineages within the Poaceae was verified. The divergence time distributions for Musa-Zingiber (Zingiberaceae, Zingiberales) orthologs and paralogs provide strong evidence for a large-scale duplication event in the Musa lineage after its divergence from the Zingiberaceae approximately 61 Mya. Comparisons of genomic regions from M. acuminata and M. balbisiana revealed highly conserved genome structure, and indicated that these genomes diverged circa 4.6 Mya. CONCLUSION: These results point to the utility of comparative analyses between distantly-related monocot species such as rice and Musa for improving our understanding of monocot genome evolution. Sequencing the genome of M. acuminata would provide a strong foundation for comparative genomics in the monocots. In addition a genome sequence would aid genomic and genetic analyses of cultivated Musa polyploid genotypes in research aimed at localizing and cloning genes controlling important agronomic traits for breeding purposes.


Assuntos
Genoma de Planta/genética , Musa/classificação , Musa/genética , Oryza/genética , Sintenia/genética , Arabidopsis/genética , Composição de Bases , Cromossomos Artificiais Bacterianos , Elementos de DNA Transponíveis/genética , DNA Complementar/genética , Evolução Molecular , Etiquetas de Sequências Expressas , Duplicação Gênica , Genes de Plantas/genética , Musa/enzimologia , Oryza/enzimologia , Polimorfismo de Fragmento de Restrição , Sequências Repetitivas de Ácido Nucleico/genética , Sorghum/genética , Especificidade da Espécie
18.
Nat Commun ; 9(1): 2638, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29980662

RESUMO

Sugarcane (Saccharum spp.) is a major crop for sugar and bioenergy production. Its highly polyploid, aneuploid, heterozygous, and interspecific genome poses major challenges for producing a reference sequence. We exploited colinearity with sorghum to produce a BAC-based monoploid genome sequence of sugarcane. A minimum tiling path of 4660 sugarcane BAC that best covers the gene-rich part of the sorghum genome was selected based on whole-genome profiling, sequenced, and assembled in a 382-Mb single tiling path of a high-quality sequence. A total of 25,316 protein-coding gene models are predicted, 17% of which display no colinearity with their sorghum orthologs. We show that the two species, S. officinarum and S. spontaneum, involved in modern cultivars differ by their transposable elements and by a few large chromosomal rearrangements, explaining their distinct genome size and distinct basic chromosome numbers while also suggesting that polyploidization arose in both lineages after their divergence.


Assuntos
Genoma de Planta/genética , Mosaicismo , Ploidias , Saccharum/genética , Sequência de Bases , Cromossomos Artificiais Bacterianos/genética , Cromossomos de Plantas/genética , Elementos de DNA Transponíveis/genética , Amplificação de Genes , Variação Estrutural do Genoma , Modelos Genéticos , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA , Sorghum/genética
19.
PLoS One ; 9(3): e92178, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24637745

RESUMO

Understanding the effects of actions undertaken by human societies on crop evolution processes is a major challenge for the conservation of genetic resources. This study investigated the mechanisms whereby social boundaries associated with patterns of ethnolinguistic diversity have influenced the on-farm distribution of sorghum diversity. Social boundaries limit the diffusion of planting material, practices and knowledge, thus shaping crop diversity in situ. To assess the effect of social boundaries, this study was conducted in the contact zone between the Chuka, Mbeere and Tharaka ethnolinguistic groups in eastern Kenya. Sorghum varieties were inventoried and samples collected in 130 households. In all, 297 individual plants derived from seeds collected under sixteen variety names were characterized using a set of 18 SSR molecular markers and 15 morphological descriptors. The genetic structure was investigated using both a Bayesian assignment method and distance-based clustering. Principal Coordinates Analysis was used to describe the structure of the morphological diversity of the panicles. The distribution of the varieties and the main genetic clusters across ethnolinguistic groups was described using a non-parametric MANOVA and pairwise Fisher tests. The spatial distribution of landrace names and the overall genetic spatial patterns were significantly correlated with ethnolinguistic partition. However, the genetic structure inferred from molecular makers did not discriminate the short-cycle landraces despite their morphological distinctness. The cases of two improved varieties highlighted possible fates of improved materials. The most recent one was often given the name of local landraces. The second one, that was introduced a dozen years ago, displays traces of admixture with local landraces with differential intensity among ethnic groups. The patterns of congruence or discordance between the nomenclature of farmers' varieties and the structure of both genetic and morphological diversity highlight the effects of the social organization of communities on the diffusion of seed, practices, and variety nomenclature.


Assuntos
Agricultura , Etnicidade , Variação Genética , Linguística , Sorghum/genética , Genética Populacional , Geografia , Humanos , Quênia , Família Multigênica
20.
PLoS One ; 8(4): e59714, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23565161

RESUMO

Large ex situ collections require approaches for sampling manageable amounts of germplasm for in-depth characterization and use. We present here a large diversity survey in sorghum with 3367 accessions and 41 reference nuclear SSR markers. Of 19 alleles on average per locus, the largest numbers of alleles were concentrated in central and eastern Africa. Cultivated sorghum appeared structured according to geographic regions and race within region. A total of 13 groups of variable size were distinguished. The peripheral groups in western Africa, southern Africa and eastern Asia were the most homogeneous and clearly differentiated. Except for Kafir, there was little correspondence between races and marker-based groups. Bicolor, Caudatum, Durra and Guinea types were each dispersed in three groups or more. Races should therefore better be referred to as morphotypes. Wild and weedy accessions were very diverse and scattered among cultivated samples, reinforcing the idea that large gene-flow exists between the different compartments. Our study provides an entry to global sorghum germplasm collections. Our reference marker kit can serve to aggregate additional studies and enhance international collaboration. We propose a core reference set in order to facilitate integrated phenotyping experiments towards refined functional understanding of sorghum diversity.


Assuntos
Genótipo , Repetições de Microssatélites , Sorghum/genética , Alelos , Teorema de Bayes , Biologia Computacional/métodos , DNA de Plantas , Loci Gênicos , Variação Genética , Genômica , Filogenia , Filogeografia , Polimorfismo Genético , Sorghum/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA