Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Exp Dermatol ; 30(1): 102-111, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32866299

RESUMO

Dermal fibroblasts are an essential population of skin cells. They are not only responsible for synthesis and remodelling of the extracellular matrix of the dermis, but also communicate with other skin cells via autocrine and paracrine interactions. Skin-associated dermal adipocytes reside below the reticular dermis. Strong lipolysis is observed during the regression of dermal adipocytes. However, the nature of the local intercellular crosstalk in which lipids released by dermal adipocytes affecting the metabolism of adjacent skin fibroblasts has not yet been examined. With the use of a series of novel mouse models that allow us to manipulate adipocytes, we demonstrate that dermal adipocytes can modulate the structure of the dermis through regulating extracellular matrix production in dermal fibroblasts. Fatty acids released by dermal adipocytes are involved in this process. Our observations offer new in vivo insights into the role of dermal adipocyte-derived lipids in influencing metabolism of adjacent local cells in the skin through a paracrine effect in the microenvironment of the dermal adipocyte.


Assuntos
Adipócitos/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Comunicação Parácrina , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/metabolismo , Animais , Microambiente Celular , Colágeno/genética , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I/genética , Colágeno Tipo III/genética , Células do Cúmulo , Dieta Hiperlipídica , Ácidos Graxos/metabolismo , Feminino , Expressão Gênica , Lipólise , Masculino , Camundongos , Pele/citologia
2.
J Biol Chem ; 292(36): 15080-15093, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28733465

RESUMO

It has long been appreciated that insulin action is closely tied to circadian rhythms. However, the mechanisms that dictate diurnal insulin sensitivity in metabolic tissues are not well understood. Retinol-binding protein 4 (RBP4) has been implicated as a driver of insulin resistance in rodents and humans, and it has become an attractive drug target in type II diabetes. RBP4 is synthesized primarily in the liver where it binds retinol and transports it to tissues throughout the body. The retinol-RBP4 complex (holo-RBP) can be recognized by a cell-surface receptor known as stimulated by retinoic acid 6 (STRA6), which transports retinol into cells. Coupled to retinol transport, holo-RBP can activate STRA6-driven Janus kinase (JAK) signaling and downstream induction of signal transducer and activator of transcription (STAT) target genes. STRA6 signaling in white adipose tissue has been shown to inhibit insulin receptor responses. Here, we examined diurnal rhythmicity of the RBP4/STRA6 signaling axis and investigated whether STRA6 is necessary for diurnal variations in insulin sensitivity. We show that adipose tissue STRA6 undergoes circadian patterning driven in part by the nuclear transcription factor REV-ERBα. Furthermore, STRA6 is necessary for diurnal rhythmicity of insulin action and JAK/STAT signaling in adipose tissue. These findings establish that holo-RBP and its receptor STRA6 are potent regulators of diurnal insulin responses and suggest that the holo-RBP/STRA6 signaling axis may represent a novel therapeutic target in type II diabetes.


Assuntos
Ritmo Circadiano , Insulina/metabolismo , Proteínas de Membrana/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Proteínas de Membrana/deficiência , Camundongos , Camundongos Knockout , Transdução de Sinais
4.
Nat Metab ; 6(7): 1347-1366, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38961186

RESUMO

PAQR4 is an orphan receptor in the PAQR family with an unknown function in metabolism. Here, we identify a critical role of PAQR4 in maintaining adipose tissue function and whole-body metabolic health. We demonstrate that expression of Paqr4 specifically in adipocytes, in an inducible and reversible fashion, leads to partial lipodystrophy, hyperglycaemia and hyperinsulinaemia, which is ameliorated by wild-type adipose tissue transplants or leptin treatment. By contrast, deletion of Paqr4 in adipocytes improves healthy adipose remodelling and glucose homoeostasis in diet-induced obesity. Mechanistically, PAQR4 regulates ceramide levels by mediating the stability of ceramide synthases (CERS2 and CERS5) and, thus, their activities. Overactivation of the PQAR4-CERS axis causes ceramide accumulation and impairs adipose tissue function through suppressing adipogenesis and triggering adipocyte de-differentiation. Blocking de novo ceramide biosynthesis rescues PAQR4-induced metabolic defects. Collectively, our findings suggest a critical function of PAQR4 in regulating cellular ceramide homoeostasis and targeting PAQR4 offers an approach for the treatment of metabolic disorders.


Assuntos
Adipócitos , Ceramidas , Ceramidas/metabolismo , Adipócitos/metabolismo , Animais , Camundongos , Adipogenia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Tecido Adiposo/metabolismo , Obesidade/metabolismo , Humanos
5.
J Endocrinol ; 259(3)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37855264

RESUMO

The prevalence of obesity is increasing exponentially across the globe. The lack of effective treatment options for long-term weight loss has magnified the enormity of this problem. Studies continue to demonstrate that adipose tissue holds a biological memory, one of the most important determinant of long-term weight maintenance. This phenomenon is consistent with the metabolically dynamic role of adipose tissue: it adapts and expands to store for excess energy and serves as an endocrine organ capable of synthesizing a number of biologically active molecules that regulate metabolic homeostasis. An important component of the plasticity of adipose tissue is the extracellular matrix, essential for structural support, mechanical stability, cell signaling and function. Chronic obesity upends a delicate balance of extracellular matrix synthesis and degradation, and the ECM accumulates in such a way that prevents the plasticity and function of the diverse cell types in adipose tissue. A series of maladaptive responses among the cells in adipose tissue leads to inflammation and fibrosis, major mechanisms that explain the link between obesity and insulin resistance, risk of type 2 diabetes, cardiovascular disease, and nonalcoholic fatty liver disease. Adipose tissue fibrosis persists after weight loss and further enhances adipose tissue dysfunction if weight is regained. Here, we highlight the current knowledge of the cellular events governing adipose tissue ECM remodeling during the development of obesity. Our goal is to delineate the relationship more clearly between adipose tissue ECM and metabolic disease, an important step toward better defining the pathophysiology of dysfunctional adipose tissue.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Tecido Adiposo/metabolismo , Obesidade/metabolismo , Fibrose , Inflamação/metabolismo , Redução de Peso
6.
Nat Metab ; 4(11): 1474-1494, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36329217

RESUMO

Iron is essential to many fundamental biological processes, but its cellular compartmentalization and concentration must be tightly controlled. Although iron overload can contribute to obesity-associated metabolic deterioration, the subcellular localization and accumulation of iron in adipose tissue macrophages is largely unknown. Here, we show that macrophage mitochondrial iron levels control systemic metabolism in male mice by altering adipocyte iron concentrations. Using various transgenic mouse models to manipulate the macrophage mitochondrial matrix iron content in an inducible fashion, we demonstrate that lowering macrophage mitochondrial matrix iron increases numbers of M2-like macrophages in adipose tissue, lowers iron levels in adipocytes, attenuates inflammation and protects from high-fat-diet-induced metabolic deterioration. Conversely, elevating macrophage mitochondrial matrix iron increases M1-like macrophages and iron levels in adipocytes, exacerbates inflammation and worsens high-fat-diet-induced metabolic dysfunction. These phenotypes are robustly reproduced by transplantation of a small amount of fat from transgenic to wild-type mice. Taken together, we identify macrophage mitochondrial iron levels as a crucial determinant of systemic metabolic homeostasis in mice.


Assuntos
Tecido Adiposo , Ferro , Masculino , Camundongos , Animais , Ferro/metabolismo , Tecido Adiposo/metabolismo , Macrófagos/metabolismo , Adipócitos/metabolismo , Inflamação/metabolismo
7.
Diabetes ; 71(12): 2496-2512, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35880782

RESUMO

Caveolin-1 (cav1) is an important structural and signaling component of plasma membrane invaginations called caveolae and is abundant in adipocytes. As previously reported, adipocyte-specific ablation of the cav1 gene (ad-cav1 knockout [KO] mouse) does not result in elimination of the protein, as cav1 protein traffics to adipocytes from neighboring endothelial cells. However, this mouse is a functional KO because adipocyte caveolar structures are depleted. Compared with controls, ad-cav1KO mice on a high-fat diet (HFD) display improved whole-body glucose clearance despite complete loss of glucose-stimulated insulin secretion, blunted insulin-stimulated AKT activation in metabolic tissues, and partial lipodystrophy. The cause is increased insulin-independent glucose uptake by white adipose tissue (AT) and reduced hepatic gluconeogenesis. Furthermore, HFD-fed ad-cav1KO mice display significant AT inflammation, fibrosis, mitochondrial dysfunction, and dysregulated lipid metabolism. The glucose clearance phenotype of the ad-cav1KO mice is at least partially mediated by AT small extracellular vesicles (AT-sEVs). Injection of control mice with AT-sEVs from ad-cav1KO mice phenocopies ad-cav1KO characteristics. Interestingly, AT-sEVs from ad-cav1KO mice propagate the phenotype of the AT to the liver. These data indicate that ad-cav1 is essential for healthy adaptation of the AT to overnutrition and prevents aberrant propagation of negative phenotypes to other organs by EVs.


Assuntos
Caveolina 1 , Vesículas Extracelulares , Insulina , Animais , Camundongos , Adipócitos/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Dieta Hiperlipídica , Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Insulina Regular Humana , Camundongos Knockout
8.
Elife ; 112022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35072627

RESUMO

Obesity has repeatedly been linked to reorganization of the gut microbiome, yet to this point obesity therapeutics have been targeted exclusively toward the human host. Here, we show that gut microbe-targeted inhibition of the trimethylamine N-oxide (TMAO) pathway protects mice against the metabolic disturbances associated with diet-induced obesity (DIO) or leptin deficiency (Lepob/ob). Small molecule inhibition of the gut microbial enzyme choline TMA-lyase (CutC) does not reduce food intake but is instead associated with alterations in the gut microbiome, improvement in glucose tolerance, and enhanced energy expenditure. We also show that gut microbial CutC inhibition is associated with reorganization of host circadian control of both phosphatidylcholine and energy metabolism. This study underscores the relationship between microbe and host metabolism and provides evidence that gut microbe-derived trimethylamine (TMA) is a key regulator of the host circadian clock. This work also demonstrates that gut microbe-targeted enzyme inhibitors have potential as anti-obesity therapeutics.


Assuntos
Colina/análogos & derivados , Ritmo Circadiano/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Obesidade/metabolismo , Animais , Colina/administração & dosagem , Colina/metabolismo , Dieta Hiperlipídica , Inibidores Enzimáticos/farmacologia , Leptina/deficiência , Liases/efeitos dos fármacos , Masculino , Metilaminas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , Obesidade/microbiologia
9.
Cell Stem Cell ; 28(4): 702-717.e8, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33539722

RESUMO

The adipose tissue stroma is a rich source of molecularly distinct stem and progenitor cell populations with diverse functions in metabolic regulation, adipogenesis, and inflammation. The ontology of these populations and the mechanisms that govern their behaviors in response to stimuli, such as overfeeding, however, are unclear. Here, we show that the developmental fates and functional properties of adipose platelet-derived growth factor receptor beta (PDGFRß)+ progenitor subpopulations are tightly regulated by mitochondrial metabolism. Reducing the mitochondrial ß-oxidative capacity of PDGFRß+ cells via inducible expression of MitoNEET drives a pro-inflammatory phenotype in adipose progenitors and alters lineage commitment. Furthermore, disrupting mitochondrial function in PDGFRß+ cells rapidly induces alterations in immune cell composition in lean mice and impacts expansion of adipose tissue in diet-induced obesity. The adverse effects on adipose tissue remodeling can be reversed by restoring mitochondrial activity in progenitors, suggesting therapeutic potential for targeting energy metabolism in these cells.


Assuntos
Adipogenia , Tecido Adiposo Branco , Tecido Adiposo/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Proteínas de Ligação ao Ferro/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Mitocôndrias , Células-Tronco/metabolismo
10.
Cell Metab ; 33(9): 1853-1868.e11, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34418352

RESUMO

Adipocytes undergo intense energetic stress in obesity resulting in loss of mitochondrial mass and function. We have found that adipocytes respond to mitochondrial stress by rapidly and robustly releasing small extracellular vesicles (sEVs). These sEVs contain respiration-competent, but oxidatively damaged mitochondrial particles, which enter circulation and are taken up by cardiomyocytes, where they trigger a burst of ROS. The result is compensatory antioxidant signaling in the heart that protects cardiomyocytes from acute oxidative stress, consistent with a preconditioning paradigm. As such, a single injection of sEVs from energetically stressed adipocytes limits cardiac ischemia/reperfusion injury in mice. This study provides the first description of functional mitochondrial transfer between tissues and the first vertebrate example of "inter-organ mitohormesis." Thus, these seemingly toxic adipocyte sEVs may provide a physiological avenue of potent cardio-protection against the inevitable lipotoxic or ischemic stresses elicited by obesity.


Assuntos
Adipócitos , Vesículas Extracelulares , Adipócitos/metabolismo , Animais , Vesículas Extracelulares/metabolismo , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias Cardíacas , Miócitos Cardíacos/metabolismo , Estresse Oxidativo
11.
Nat Commun ; 12(1): 4829, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376643

RESUMO

Plasma hyaluronan (HA) increases systemically in type 2 diabetes (T2D) and the HA synthesis inhibitor, 4-Methylumbelliferone, has been proposed to treat the disease. However, HA is also implicated in normal physiology. Therefore, we generated a Hyaluronan Synthase 2 transgenic mouse line, driven by a tet-response element promoter to understand the role of HA in systemic metabolism. To our surprise, adipocyte-specific overproduction of HA leads to smaller adipocytes and protects mice from high-fat-high-sucrose-diet-induced obesity and glucose intolerance. Adipocytes also have more free glycerol that can be released upon beta3 adrenergic stimulation. Improvements in glucose tolerance were not linked to increased plasma HA. Instead, an HA-driven systemic substrate redistribution and adipose tissue-liver crosstalk contributes to the systemic glucose improvements. In summary, we demonstrate an unexpected improvement in glucose metabolism as a consequence of HA overproduction in adipose tissue, which argues against the use of systemic HA synthesis inhibitors to treat obesity and T2D.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Dioxóis/farmacologia , Glucose/metabolismo , Ácido Hialurônico/metabolismo , Lipólise/efeitos dos fármacos , Adipócitos/citologia , Tecido Adiposo/citologia , Animais , Células Cultivadas , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Feminino , Intolerância à Glucose/metabolismo , Homeostase , Humanos , Hipoglicemiantes/farmacologia , Masculino , Camundongos , Camundongos Transgênicos , Obesidade/etiologia , Obesidade/metabolismo
12.
Elife ; 102021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33904399

RESUMO

Adiponectin is essential for the regulation of tissue substrate utilization and systemic insulin sensitivity. Clinical studies have suggested a positive association of circulating adiponectin with healthspan and lifespan. However, the direct effects of adiponectin on promoting healthspan and lifespan remain unexplored. Here, we are using an adiponectin null mouse and a transgenic adiponectin overexpression model. We directly assessed the effects of circulating adiponectin on the aging process and found that adiponectin null mice display exacerbated age-related glucose and lipid metabolism disorders. Moreover, adiponectin null mice have a significantly shortened lifespan on both chow and high-fat diet. In contrast, a transgenic mouse model with elevated circulating adiponectin levels has a dramatically improved systemic insulin sensitivity, reduced age-related tissue inflammation and fibrosis, and a prolonged healthspan and median lifespan. These results support a role of adiponectin as an essential regulator for healthspan and lifespan.


Assuntos
Adiponectina/fisiologia , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Animais , Feminino , Glucose/metabolismo , Homeostase , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos , Longevidade/fisiologia , Masculino , Camundongos , Camundongos Transgênicos
13.
J Clin Invest ; 129(6): 2198-2200, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-31081800

RESUMO

The study of beige adipose tissue (BeAT) has recently gained popularity because of its potential as a therapeutic target for the treatment of obesity and other metabolic disorders. While BeAT regulation is well understood in adults, the critical signals regulating BeAT during infant development need to be better defined. The bioactive components in breast milk have been primarily studied in the context of immunity. In this issue of the JCI, Yu and Dilbaz et al. identify how a class of breast milk-specific lipid mediators referred to as alkylglycerols (AKGs) maintain BeAT in infants and prevent the transdifferentiation of BeAT into lipid-storing white adipose tissue (WAT).


Assuntos
Adipócitos Bege , Tecido Adiposo , Tecido Adiposo Marrom , Tecido Adiposo Branco , Adulto , Aleitamento Materno , Criança , Feminino , Humanos , Lactente , Lipídeos , Macrófagos , Leite Humano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA