Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Cell Sci ; 133(3)2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-31964708

RESUMO

Owing to the local enrichment of factors that influence its dynamics and organization, the actin cytoskeleton displays different shapes and functions within the same cell. In yeast cells, post-Golgi vesicles ride on long actin cables to the bud tip. The proteins Boi1 and Boi2 (Boi1/2) participate in tethering and docking these vesicles to the plasma membrane. Here, we show in Saccharomyces cerevisiae that Boi1/2 also recruit nucleation and elongation factors to form actin filaments at sites of exocytosis. Disrupting the connection between Boi1/2 and the nucleation factor Bud6 impairs filament formation, reduces the directed movement of the vesicles to the tip and shortens the vesicles' tethering time at the cortex. Transplanting Boi1 from the bud tip to the peroxisomal membrane partially redirects the actin cytoskeleton and the vesicular flow towards the peroxisome, and creates an alternative, rudimentary vesicle-docking zone. We conclude that Boi1/2, through interactions with Bud6 and Bni1, induce the formation of a cortical actin structure that receives and aligns incoming vesicles before fusion with the membrane.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Polaridade Celular , Exocitose , Proteínas dos Microfilamentos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
J Vis Exp ; (204)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38436410

RESUMO

Axonal transport is a prerequisite to deliver axonal proteins from their site of synthesis in the neuronal cell body to their destination in the axon. Consequently, loss of axonal transport impairs neuronal growth and function. Studying axonal transport therefore improves our understanding of neuronal cell biology. With recent improvements in CRISPR Cas9 genome editing, endogenous labeling of axonal cargos has become accessible, enabling to move beyond ectopic expression-based visualization of transport. However, endogenous labeling often comes at the cost of low signal intensity and necessitates optimization strategies to obtain robust data. Here, we describe a protocol to optimize the visualization of axonal transport by discussing acquisition parameters and a bleaching approach to improve the signal of endogenous labeled cargo over diffuse cytoplasmic background. We apply our protocol to optimize the visualization of synaptic vesicle precursors (SVPs) labeled by green fluorescent protein (GFP)-tagged RAB-3 to highlight how fine-tuning acquisition parameters can improve the analysis of endogenously labeled axonal cargo in Caenorhabditis elegans (C. elegans).


Assuntos
Transporte Axonal , Caenorhabditis elegans , Corantes Verde de Lissamina , Animais , Axônios , Microscopia de Fluorescência
3.
Dev Cell ; 58(19): 1847-1863.e12, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37751746

RESUMO

An actin-spectrin lattice, the membrane periodic skeleton (MPS), protects axons from breakage. MPS integrity relies on spectrin delivery via slow axonal transport, a process that remains poorly understood. We designed a probe to visualize endogenous spectrin dynamics at single-axon resolution in vivo. Surprisingly, spectrin transport is bimodal, comprising fast runs and movements that are 100-fold slower than previously reported. Modeling and genetic analysis suggest that the two rates are independent, yet both require kinesin-1 and the coiled-coil proteins UNC-76/FEZ1 and UNC-69/SCOC, which we identify as spectrin-kinesin adaptors. Knockdown of either protein led to disrupted spectrin motility and reduced distal MPS, and UNC-76 overexpression instructed excessive transport of spectrin. Artificially linking spectrin to kinesin-1 drove robust motility but inefficient MPS assembly, whereas impairing MPS assembly led to excessive spectrin transport, suggesting a balance between transport and assembly. These results provide insight into slow axonal transport and MPS integrity.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Espectrina , Animais , Transporte Axonal , Axônios/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cinesinas/metabolismo , Espectrina/metabolismo
4.
Cell Rep ; 35(7): 109122, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34010635

RESUMO

How cells adopt a different morphology to cope with stress is not well understood. Here, we show that budding yeast Ecm25 associates with polarized endocytic sites and interacts with the polarity regulator Cdc42 and several late-stage endocytic proteins via distinct regions, including an actin filament-binding motif. Deletion of ECM25 does not affect Cdc42 activity or cause any strong defects in fluid-phase and clathrin-mediated endocytosis but completely abolishes hydroxyurea-induced cell elongation. This phenotype is accompanied by depolarization of the spatiotemporally coupled exo-endocytosis in the bud cortex while maintaining the overall mother-bud polarity. These data suggest that Ecm25 provides an essential link between the polarization signal and the endocytic machinery to enable adaptive morphogenesis under stress conditions.


Assuntos
Endocitose/fisiologia , Recombinação Genética/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo
5.
Biol Open ; 8(8)2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31362951

RESUMO

The polarisome comprises a network of proteins that organizes polar growth in yeast and filamentous fungi. The yeast formin Bni1 and the actin nucleation-promoting factor Bud6 are subunits of the polarisome that together catalyze the formation of actin cables below the tip of yeast cells. We identified YFR016c (Aip5) as an interaction partner of Bud6 and the polarisome scaffold Spa2. Yeast cells lacking Aip5 display a reduced number of actin cables. Aip5 binds with its N-terminal region to Spa2 and with its C-terminal region to Bud6. Both interactions collaborate to localize Aip5 at bud tip and neck, and are required to stimulate the formation of actin cables. Our experiments characterize Aip5 as a novel subunit of a complex that regulates the number of actin filaments at sites of polar growth.

6.
Front Cell Dev Biol ; 4: 123, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27857941

RESUMO

The septins are a conserved family of GTP-binding proteins present in all eukaryotic cells except plants. They were originally discovered in the baker's yeast Saccharomyces cerevisiae that serves until today as an important model organism for septin research. In yeast, the septins assemble into a highly ordered array of filaments at the mother bud neck. The septins are regulators of spatial compartmentalization in yeast and act as key players in cytokinesis. This minireview summarizes the recent findings about structural features and cell biology of the yeast septins.

7.
G3 (Bethesda) ; 6(9): 2809-15, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27402358

RESUMO

Understanding the topologies and functions of protein interaction networks requires the selective removal of single interactions. We introduce a selection strategy that enriches among a random library of alleles for mutations that impair the binding to a given partner protein. The selection makes use of a split-ubiquitin based protein interaction assay. This assay provides yeast cells that carry protein complex disturbing mutations with the advantage of being able to survive on uracil-lacking media. Applied to the exemplary interaction between the PB domains of the yeast proteins Bem1 and Cdc24, we performed two independent selections. The selections were either analyzed by Sanger sequencing of isolated clones or by next generation sequencing (NGS) of pools of clones. Both screens enriched for the same mutation in position 833 of Cdc24. Biochemical analysis confirmed that this mutation disturbs the interaction with Bem1 but not the fold of the protein. The larger dataset obtained by NGS achieved a more complete representation of the bipartite interaction interface of Cdc24.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ciclo Celular/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Mapas de Interação de Proteínas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Alelos , Proteínas de Ciclo Celular/química , Fatores de Troca do Nucleotídeo Guanina/química , Sequenciamento de Nucleotídeos em Larga Escala , Complexos Multiproteicos/genética , Mutação , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Ubiquitina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA