Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Breast Cancer Res ; 26(1): 87, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816770

RESUMO

BACKGROUND: Despite progress understanding the mechanisms underlying tumor spread, metastasis remains a clinical challenge. We identified the choline-producing glycerophosphodiesterase, EDI3 and reported its association with metastasis-free survival in endometrial cancer. We also observed that silencing EDI3 slowed cell migration and other cancer-relevant phenotypes in vitro. Recent work demonstrated high EDI3 expression in ER-HER2+ breast cancer compared to the other molecular subtypes. Silencing EDI3 in ER-HER2+ cells significantly reduced cell survival in vitro and decreased tumor growth in vivo. However, a role for EDI3 in tumor metastasis in this breast cancer subtype was not explored. Therefore, in the present work we investigate whether silencing EDI3 in ER-HER2+ breast cancer cell lines alters phenotypes linked to metastasis in vitro, and metastasis formation in vivo using mouse models of experimental metastasis. METHODS: To inducibly silence EDI3, luciferase-expressing HCC1954 cells were transduced with lentiviral particles containing shRNA oligos targeting EDI3 under the control of doxycycline. The effect on cell migration, adhesion, colony formation and anoikis was determined in vitro, and significant findings were confirmed in a second ER-HER2+ cell line, SUM190PT. Doxycycline-induced HCC1954-luc shEDI3 cells were injected into the tail vein or peritoneum of immunodeficient mice to generate lung and peritoneal metastases, respectively and monitored using non-invasive bioluminescence imaging. Metabolite levels in cells and tumor tissue were analyzed using targeted mass spectrometry and MALDI mass spectrometry imaging (MALDI-MSI), respectively. RESULTS: Inducibly silencing EDI3 reduced cell adhesion and colony formation, as well as increased susceptibility to anoikis in HCC1954-luc cells, which was confirmed in SUM190PT cells. No influence on cell migration was observed. Reduced luminescence was seen in lungs and peritoneum of mice injected with cells expressing less EDI3 after tail vein and intraperitoneal injection, respectively, indicative of reduced metastasis. Importantly, mice injected with EDI3-silenced cells survived longer. Closer analysis of the peritoneal organs revealed that silencing EDI3 had no effect on metastatic organotropism but instead reduced metastatic burden. Finally, metabolic analyses revealed significant changes in choline and glycerophospholipid metabolites in cells and in pancreatic metastases in vivo. CONCLUSIONS: Reduced metastasis upon silencing supports EDI3's potential as a treatment target in metastasizing ER-HER2+ breast cancer.


Assuntos
Neoplasias da Mama , Receptor ErbB-2 , Receptores de Estrogênio , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Receptores de Estrogênio/metabolismo , Modelos Animais de Doenças , Movimento Celular , Técnicas de Silenciamento de Genes , Carga Tumoral , Metástase Neoplásica , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proliferação de Células
2.
Int J Cancer ; 145(4): 901-915, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30653260

RESUMO

Endothelial lipase (LIPG) is a cell surface associated lipase that displays phospholipase A1 activity towards phosphatidylcholine present in high-density lipoproteins (HDL). LIPG was recently reported to be expressed in breast cancer and to support proliferation, tumourigenicity and metastasis. Here we show that severe oxidative stress leading to AMPK activation triggers LIPG upregulation, resulting in intracellular lipid droplet accumulation in breast cancer cells, which supports survival. Neutralizing oxidative stress abrogated LIPG upregulation and the concomitant lipid storage. In human breast cancer, high LIPG expression was observed in a limited subset of tumours and was significantly associated with shorter metastasis-free survival in node-negative, untreated patients. Moreover, expression of PLIN2 and TXNRD1 in these tumours indicated a link to lipid storage and oxidative stress. Altogether, our findings reveal a previously unrecognized role for LIPG in enabling oxidative stress-induced lipid droplet accumulation in tumour cells that protects against oxidative stress, and thus supports tumour progression.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Lipase/metabolismo , Lipídeos/fisiologia , Estresse Oxidativo/fisiologia , Linhagem Celular Tumoral , Progressão da Doença , Intervalo Livre de Doença , Feminino , Humanos , Metabolismo dos Lipídeos/fisiologia , Lipoproteínas HDL/metabolismo , Células MCF-7 , Pessoa de Meia-Idade , Regulação para Cima/fisiologia
3.
J Exp Clin Cancer Res ; 42(1): 25, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36670508

RESUMO

BACKGROUND: Intrinsic or acquired resistance to HER2-targeted therapy is often a problem when small molecule tyrosine kinase inhibitors or antibodies are used to treat patients with HER2 positive breast cancer. Therefore, the identification of new targets and therapies for this patient group is warranted. Activated choline metabolism, characterized by elevated levels of choline-containing compounds, has been previously reported in breast cancer. The glycerophosphodiesterase EDI3 (GPCPD1), which hydrolyses glycerophosphocholine to choline and glycerol-3-phosphate, directly influences choline and phospholipid metabolism, and has been linked to cancer-relevant phenotypes in vitro. While the importance of choline metabolism has been addressed in breast cancer, the role of EDI3 in this cancer type has not been explored. METHODS: EDI3 mRNA and protein expression in human breast cancer tissue were investigated using publicly-available Affymetrix gene expression microarray datasets (n = 540) and with immunohistochemistry on a tissue microarray (n = 265), respectively. A panel of breast cancer cell lines of different molecular subtypes were used to investigate expression and activity of EDI3 in vitro. To determine whether EDI3 expression is regulated by HER2 signalling, the effect of pharmacological inhibition and siRNA silencing of HER2, as well as the influence of inhibiting key components of signalling cascades downstream of HER2 were studied. Finally, the influence of silencing and pharmacologically inhibiting EDI3 on viability was investigated in vitro and on tumour growth in vivo. RESULTS: In the present study, we show that EDI3 expression is highest in ER-HER2 + human breast tumours, and both expression and activity were also highest in ER-HER2 + breast cancer cell lines. Silencing HER2 using siRNA, as well as inhibiting HER2 signalling with lapatinib decreased EDI3 expression. Pathways downstream of PI3K/Akt/mTOR and GSK3ß, and transcription factors, including HIF1α, CREB and STAT3 were identified as relevant in regulating EDI3 expression. Silencing EDI3 preferentially decreased cell viability in the ER-HER2 + cells. Furthermore, silencing or pharmacologically inhibiting EDI3 using dipyridamole in ER-HER2 + cells resistant to HER2-targeted therapy decreased cell viability in vitro and tumour growth in vivo. CONCLUSIONS: Our results indicate that EDI3 may be a potential novel therapeutic target in patients with HER2-targeted therapy-resistant ER-HER2 + breast cancer that should be further explored.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Fosfatidilinositol 3-Quinases , Linhagem Celular Tumoral , Colina/metabolismo , Colina/uso terapêutico , RNA Interferente Pequeno , Receptor ErbB-2/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Fosfolipases/genética
4.
Prog Neurobiol ; 156: 189-213, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28587768

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disease with tens of millions of people affected worldwide. The pathogenesis is still poorly understood and various therapeutical approaches targeting the amyloid ß (Aß) peptide, a product of the amyloidogenic cleavage of the amyloid precursor protein (APP), failed. Moreover, a couple of studies critically questioned the relevance of Aß in the pathogenesis of AD. Thus, new ideas need to be studied and one highly interesting hypothesis is the APP mediated signal transduction to the nucleus. As a consequence nuclear -potentially toxic- structures emerge, which were recently found to a high extent in human AD tissue and thus, may contribute to neurodegeneration. Relevant for the signaling machinery are modifications at the very C-terminal end of the precursor protein, the APP intracellular domain (AICD). In this review we update the knowledge on mechanisms on AICD referring to our 2008 article: The amyloid precursor protein intracellular domain (AICD) as modulator of gene expression, apoptosis, and cytoskeletal dynamics-Relevance for Alzheimer's disease (T. Muller, et al., 2008). We summarize how AICD is generated and degraded, we describe its intramolecular motifs, translational modifications, and how those as well as APP dimerization influence AICD generation and function. Moreover, we resume the AICD interactome and elucidate AICDs involvement in nuclear signaling, transcriptional regulation, cell death, DNA repair and cell cycle re-entry and we give insights in its physiological function. Results are summarized in the comprehensive poster "The world of AICD".


Assuntos
Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Transdução de Sinais/fisiologia , Doença de Alzheimer/metabolismo , Animais , Progressão da Doença , Regulação da Expressão Gênica , Humanos
5.
Neurobiol Aging ; 48: 103-113, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27644079

RESUMO

Nuclear spheres are protein aggregates consisting of FE65, TIP60, BLM, and other yet unknown proteins. Generation of these structures in the cellular nucleus is putatively modulated by the amyloid precursor protein (APP), either by its cleavage or its phosphorylation. Nuclear spheres were preferentially studied in cell culture models and their existence in the human brain had not been known. Existence of nuclear spheres in the human brain was studied using immunohistochemistry. Cell culture experiments were used to study regulative mechanisms of nuclear sphere generation. The comparison of human frontal cortex brain samples from Alzheimer's disease (AD) patients to age-matched controls revealed a dramatically and highly significant enrichment of nuclear spheres in the AD brain. Costaining demonstrated that neurons are distinctly affected by nuclear spheres, but astrocytes never are. Nuclear spheres were predominantly found in neurons that were negative for threonine 668 residue in APP phosphorylation. Cell culture experiments revealed that JNK3-mediated APP phosphorylation reduces the amount of sphere-positive cells. The study suggests that nuclear spheres are a new APP-derived central hallmark of AD, which might be of crucial relevance for the molecular mechanisms in neurodegeneration.


Assuntos
Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Núcleo Celular/metabolismo , Histona Acetiltransferases/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Agregados Proteicos , RecQ Helicases/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/fisiologia , Células HEK293 , Humanos , Lisina Acetiltransferase 5 , Proteína Quinase 10 Ativada por Mitógeno/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA