Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 9(1): 41, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29298986

RESUMO

Cracks in solid-state materials are typically irreversible. Here we report electrically reversible opening and closing of nanoscale cracks in an intermetallic thin film grown on a ferroelectric substrate driven by a small electric field (~0.83 kV/cm). Accordingly, a nonvolatile colossal electroresistance on-off ratio of more than 108 is measured across the cracks in the intermetallic film at room temperature. Cracks are easily formed with low-frequency voltage cycling and remain stable when the device is operated at high frequency, which offers intriguing potential for next-generation high-frequency memory applications. Moreover, endurance testing demonstrates that the opening and closing of such cracks can reach over 107 cycles under 10-µs pulses, without catastrophic failure of the film.

2.
J Mech Behav Biomed Mater ; 76: 76-84, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28550972

RESUMO

We investigated the endocarp of the fruit of Cocos nucifera (i.e., the inner coconut shell), examining the structure across multiple length scales through advanced characterization techniques and in situ testing of mechanical properties. Like many biological materials, the coconut shell possesses a hierarchical structure with distinct features at different length scales that depend on orientation and age. Aged coconut was found to have a significantly stronger (ultimate tensile strength, UTS = 48.5MPa), stiffer (Young's modulus, E = 1.92GPa), and tougher (fracture resistance (R-curve) peak of KJ = 3.2MPa m1/2) endocarp than the younger fruit for loading in the latitudinal orientation. While the mechanical properties of coconut shell were observed to improve with age, they also become more anisotropic: the young coconut shell had the same strength (17MPa) and modulus (0.64GPa) values and similar R-curves for both longitudinal and latitudinal loading configurations, whereas the old coconut had 82% higher strength for loading in the latitudinal orientation, and >50% higher crack growth toughness for cracking on the latitudinal plane. Structural aspects affecting the mechanical properties across multiple length scales with aging were identified as improved load transfer to the cellulose crystalline nanostructure (identified by synchrotron x-ray diffraction) and sclerification of the endocarp, the latter of which included closing of the cell lumens and lignification of the cell walls. The structural changes gave a denser and mechanically superior micro and nanostructure to the old coconut shell. Additionally, the development of anisotropy was attributed to the formation of an anisotropic open channel structure throughout the shell of the old coconut that affected both crack initiation during uniaxial tensile tests and the toughening mechanisms of crack trapping and deflection during crack propagation.


Assuntos
Cocos , Fenômenos Mecânicos , Fenômenos Biomecânicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA