Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38894180

RESUMO

With the increasing number of households owning pets, the importance of sensor data for recognizing pet behavior has grown significantly. However, challenges arise due to the costs and reliability issues associated with data collection. This paper proposes a method for classifying pet behavior using cleaned meta pseudo labels to overcome these issues. The data for this study were collected using wearable devices equipped with accelerometers, gyroscopes, and magnetometers, and pet behaviors were classified into five categories. Utilizing this data, we analyzed the impact of the quantity of labeled data on accuracy and further enhanced the learning process by integrating an additional Distance Loss. This method effectively improves the learning process by removing noise from unlabeled data. Experimental results demonstrated that while the conventional supervised learning method achieved an accuracy of 82.9%, the existing meta pseudo labels method showed an accuracy of 86.2%, and the cleaned meta pseudo labels method proposed in this study surpassed these with an accuracy of 88.3%. These results hold significant implications for the development of pet monitoring systems, and the approach of this paper provides an effective solution for recognizing and classifying pet behavior in environments with insufficient labels.

2.
J Biol Chem ; 293(15): 5679-5694, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29475943

RESUMO

The pathogen Vibrio cholerae is the causative agent of cholera. Emergence of antibiotic-resistant V. cholerae strains is increasing, but the underlying mechanisms remain unclear. Herein, we report that the stringent response regulator and stress alarmone guanosine tetra- and pentaphosphate ((p)ppGpp) significantly contributes to antibiotic tolerance in V. cholerae We found that N16961, a pandemic V. cholerae strain, and its isogenic (p)ppGpp-overexpressing mutant ΔrelAΔspoT are both more antibiotic-resistant than (p)ppGpp0 (ΔrelAΔrelVΔspoT) and ΔdksA mutants, which cannot produce or utilize (p)ppGpp, respectively. We also found that additional disruption of the aconitase B-encoding and tricarboxylic acid (TCA) cycle gene acnB in the (p)ppGpp0 mutant increases its antibiotic tolerance. Moreover, expression of TCA cycle genes, including acnB, was increased in (p)ppGpp0, but not in the antibiotic-resistant ΔrelAΔspoT mutant, suggesting that (p)ppGpp suppresses TCA cycle activity, thereby entailing antibiotic resistance. Importantly, when grown anaerobically or incubated with an iron chelator, the (p)ppGpp0 mutant became antibiotic-tolerant, suggesting that reactive oxygen species (ROS) are involved in antibiotic-mediated bacterial killing. Consistent with that hypothesis, tetracycline treatment markedly increased ROS production in the antibiotic-susceptible mutants. Interestingly, expression of the Fe(III) ABC transporter substrate-binding protein FbpA was increased 10-fold in (p)ppGpp0, and fbpA gene deletion restored viability of tetracycline-exposed (p)ppGpp0 cells. Of note, FbpA expression was repressed in the (p)ppGpp-accumulating mutant, resulting in a reduction of intracellular free iron, required for the ROS-generating Fenton reaction. Our results indicate that (p)ppGpp-mediated suppression of central metabolism and iron uptake reduces antibiotic-induced oxidative stress in V. cholerae.


Assuntos
Farmacorresistência Bacteriana/efeitos dos fármacos , Guanosina Pentafosfato/farmacologia , Guanosina Tetrafosfato/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Vibrio cholerae/metabolismo , Farmacorresistência Bacteriana/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Mutação , Proteínas Periplásmicas de Ligação/biossíntese , Proteínas Periplásmicas de Ligação/genética , Vibrio cholerae/genética
3.
J Biol Chem ; 289(19): 13232-42, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24648517

RESUMO

As a facultative anaerobe, Vibrio cholerae can grow by anaerobic respiration. Production of cholera toxin (CT), a major virulence factor of V. cholerae, is highly promoted during anaerobic growth using trimethylamine N-oxide (TMAO) as an alternative electron acceptor. Here, we investigated the molecular mechanisms of TMAO-stimulated CT production and uncovered the crucial involvement of stringent response in this process. V. cholerae 7th pandemic strain N16961 produced a significantly elevated level of ppGpp, the bacterial stringent response alarmone, during anaerobic TMAO respiration. Bacterial viability was impaired, and DNA replication was also affected under the same growth condition, further suggesting that stringent response is induced. A ΔrelA ΔspoT ppGpp overproducer strain produced an enhanced level of CT, whereas anaerobic growth via TMAO respiration was severely inhibited. In contrast, a ppGpp-null strain (ΔrelA ΔspoT ΔrelV) grew substantially better, but produced no CT, suggesting that CT production and bacterial growth are inversely regulated in response to ppGpp accumulation. Bacterial capability to produce CT was completely lost when the dksA gene, which encodes a protein that works cooperatively with ppGpp, was deleted. In the ΔdksA mutant, stringent response growth inhibition was alleviated, further supporting the inverse regulation of CT production and anaerobic growth. In vivo virulence of ΔrelA ΔspoT ΔrelV or ΔdksA mutants was significantly attenuated. The ΔrelA ΔspoT mutant maintained virulence when infected with exogenous TMAO despite its defective growth. Together, our results reveal that stringent response is activated under TMAO-stimulated anaerobic growth, and it regulates CT production in a growth-dependent manner in V. cholerae.


Assuntos
Toxina da Cólera/biossíntese , Metilaminas/metabolismo , Vibrio cholerae/metabolismo , Anaerobiose/fisiologia , Toxina da Cólera/genética , Deleção de Genes , Vibrio cholerae/genética
4.
J Biol Chem ; 287(47): 39742-52, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23019319

RESUMO

Vibrio cholerae is a gram-negative bacterium that causes cholera. Although the pathogenesis caused by this deadly pathogen takes place in the intestine, commonly thought to be anaerobic, anaerobiosis-induced virulence regulations are not fully elucidated. Anerobic growth of the V. cholerae strain, N16961, was promoted when trimethylamine N-oxide (TMAO) was used as an alternative electron acceptor. Strikingly, cholera toxin (CT) production was markedly induced during anaerobic TMAO respiration. N16961 mutants unable to metabolize TMAO were incapable of producing CT, suggesting a mechanistic link between anaerobic TMAO respiration and CT production. TMAO reductase is transported to the periplasm via the twin arginine transport (TAT) system. A similar defect in both anaerobic TMAO respiration and CT production was also observed in a N16961 TAT mutant. In contrast, the abilities to grow on TMAO and to produce CT were not affected in a mutant of the general secretion pathway. This suggests that V. cholerae may utilize the TAT system to secrete CT during TMAO respiration. During anaerobic growth with TMAO, N16961 cells exhibit green fluorescence when stained with 2',7'-dichlorofluorescein diacetate, a specific dye for reactive oxygen species (ROS). Furthermore, CT production was decreased in the presence of an ROS scavenger suggesting a positive role of ROS in regulating CT production. When TMAO was co-administered to infant mice infected with N16961, the mice exhibited more severe pathogenic symptoms. Together, our results reveal a novel anaerobic growth condition that stimulates V. cholerae to produce its major virulence factor.


Assuntos
Sistemas de Secreção Bacterianos/fisiologia , Toxina da Cólera/metabolismo , Cólera/enzimologia , Periplasma/metabolismo , Vibrio cholerae/enzimologia , Fatores de Virulência/metabolismo , Substituição de Aminoácidos , Anaerobiose/efeitos dos fármacos , Anaerobiose/genética , Animais , Sistemas de Secreção Bacterianos/efeitos dos fármacos , Cólera/genética , Toxina da Cólera/genética , Metilaminas/farmacologia , Camundongos , Mutação de Sentido Incorreto , Oxidantes/farmacologia , Periplasma/genética , Vibrio cholerae/genética , Vibrio cholerae/patogenicidade , Fatores de Virulência/genética
5.
Appl Environ Microbiol ; 79(12): 3829-38, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23584783

RESUMO

Evidence suggests that gut microbes colonize the mammalian intestine through propagation as an adhesive microbial community. A bacterial artificial chromosome (BAC) library of murine bowel microbiota DNA in the surrogate host Escherichia coli DH10B was screened for enhanced adherence capability. Two out of 5,472 DH10B clones, 10G6 and 25G1, exhibited enhanced capabilities to adhere to inanimate surfaces in functional screens. DNA segments inserted into the 10G6 and 25G1 clones were 52 and 41 kb and included 47 and 41 protein-coding open reading frames (ORFs), respectively. DNA sequence alignments, tetranucleotide frequency, and codon usage analysis strongly suggest that these two DNA fragments are derived from species belonging to the genus Bacteroides. Consistent with this finding, a large portion of the predicted gene products were highly homologous to those of Bacteroides spp. Transposon mutagenesis and subsequent experiments that involved heterologous expression identified two operons associated with enhanced adherence. E. coli strains transformed with the 10a or 25b operon adhered to the surface of intestinal epithelium and colonized the mouse intestine more vigorously than did the control strain. This study has revealed the genetic determinants of unknown commensals (probably resembling Bacteroides species) that enhance the ability of the bacteria to colonize the murine bowel.


Assuntos
Aderência Bacteriana/genética , Biofilmes/crescimento & desenvolvimento , Escherichia coli/genética , Intestino Grosso/microbiologia , Metagenoma/genética , Animais , Aderência Bacteriana/fisiologia , Sequência de Bases , Cromossomos Artificiais Bacterianos/genética , Códon/genética , Primers do DNA/genética , Escherichia coli/fisiologia , Biblioteca Gênica , Camundongos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fases de Leitura Aberta/genética , Óperon/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Análise de Sequência de DNA
6.
Infect Immun ; 80(5): 1639-49, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22371376

RESUMO

Pseudomonas aeruginosa undergoes cell elongation and forms robust biofilms during anaerobic respiratory growth using nitrate (NO(3)(-)) as an alternative electron acceptor. Understanding the mechanism of cell shape change induced upon anaerobiosis is crucial to the development of effective treatments against P. aeruginosa biofilm infection. Here, we uncovered the molecular basis of anaerobiosis-triggered cell elongation and identified vitamin B(12) to be a molecule that can reinstate defective anaerobic growth of P. aeruginosa. The ratio of total cellular DNA content to protein content was significantly decreased in the PAO1 strain grown under anaerobic conditions, indicating that DNA replication is impaired during anaerobic growth. Anaerobic growth of PAO1 reached a higher cell density in the presence of vitamin B(12), an essential coenzyme of class II ribonucleotide reductase. In addition, cell morphology returned to a normal rod shape and transcription of stress-response genes was downregulated under the same anaerobic growth conditions. These results suggest that vitamin B(12), the production of which was suppressed during anaerobic growth, can restore cellular machineries for DNA replication and therefore facilitate better anaerobic growth of P. aeruginosa with normal cell division. Importantly, biofilm formation was substantially decreased when grown with vitamin B(12), further demonstrating that anaerobiosis-induced cell elongation is responsible for robust biofilm formation. Taken together, our data reveal mechanistic details of a morphological change that naturally occurs during anaerobic growth of P. aeruginosa and illustrates the ability of vitamin B(12) to modulate the biofilm-forming capacity of P. aeruginosa under such condition.


Assuntos
Biofilmes/crescimento & desenvolvimento , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiologia , Vitamina B 12/metabolismo , Complexo Vitamínico B/farmacologia , Aerobiose , Anaerobiose/efeitos dos fármacos , DNA Bacteriano/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/fisiologia , Consumo de Oxigênio , Análise Serial de Proteínas , Ribonucleotídeo Redutases/genética , Ribonucleotídeo Redutases/metabolismo
7.
Leuk Lymphoma ; 60(10): 2532-2540, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30947576

RESUMO

This study was conducted to define the synergistic effect of the PI3K inhibitor BKM120 with the pan-Aurora kinase inhibitor danusertib and the potential mechanism of resistance to the combined inhibitor treatment in Burkitt lymphoma cell lines. The combination of danusertib and BKM120 showed a synergistic effect on Namalwa cells but not on BJAB cells. The combined treatment led to ERK hyperactivation and induced IL-6 secretion in BJAB cells but not in Namalwa cells. A blockade of ERK signaling with trametinib suppressed the combination treatment-induced ERK activation, reduced IL-6 mRNA expression, and downregulated IL-6R mRNA expression, resulting in an improvement in the antitumor effect. We stepwise treated Namalwa cells with both inhibitors using on-and-off treatment cycles and found that Namalwa cells gained chemoresistance by activating the ERK/IL-6 feedback loop, suggesting that the ERK-dependent IL-6 positive feedback loop can compensate for AKT inactivation and is closely associated with adaptive resistance and relapse.


Assuntos
Aminopiridinas/farmacologia , Benzamidas/farmacologia , Linfoma de Burkitt/metabolismo , Resistencia a Medicamentos Antineoplásicos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Interleucina-6/metabolismo , Morfolinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Aminopiridinas/uso terapêutico , Benzamidas/uso terapêutico , Linfoma de Burkitt/tratamento farmacológico , Linfoma de Burkitt/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Morfolinas/uso terapêutico , Pirazóis/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
8.
Artigo em Inglês | MEDLINE | ID: mdl-28299285

RESUMO

Pseudomonas aeruginosa is capable of establishing airway infections. Human airway mucus contains a large amount of lysozyme, which hydrolyzes bacterial cell walls. P. aeruginosa, however, is known to be resistant to lysozyme. Here, we performed a genetic screen using a mutant library of PAO1, a prototype P. aeruginosa strain, and identified two mutants (ΔbamB and ΔfabY) that exhibited decrease in survival after lysozyme treatment. The bamB and fabY genes encode an outer membrane assembly protein and a fatty acid synthesis enzyme, respectively. These two mutants displayed retarded growth in the airway mucus secretion (AMS). In addition, these mutants exhibited reduced virulence and compromised survival fitness in two different in vivo infection models. The mutants also showed susceptibility to several antibiotics. Especially, ΔbamB mutant was very sensitive to vancomycin, ampicillin, and ceftazidime that target cell wall synthesis. The ΔfabY displayed compromised membrane integrity. In conclusion, this study uncovered a common aspect of two different P. aeruginosa mutants with pleiotropic phenotypes, and suggests that BamB and FabY could be novel potential drug targets for the treatment of P. aeruginosa infection.


Assuntos
Antibacterianos/farmacologia , Parede Celular/efeitos dos fármacos , Muramidase/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Animais , Caenorhabditis elegans , Elementos de DNA Transponíveis , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Teste de Complementação Genética , Testes Genéticos , Camundongos Endogâmicos C57BL , Viabilidade Microbiana/efeitos dos fármacos , Mutagênese Insercional , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/patogenicidade , Vancomicina/farmacologia , Virulência , beta-Lactamas/farmacologia
9.
FEMS Microbiol Lett ; 363(11)2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27190289

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen, known to develop robust biofilms. Its biofilm development increases when antibiotics are presented at subminimal inhibitory concentrations (MICs) for reasons that remain unclear. In order to identify genes that affect biofilm development under such a sublethal antibiotic stress condition, we screened a transposon (Tn) mutant library of PAO1, a prototype P. aeruginosa strain. Among ∼5000 mutants, a fiuA gene mutant was verified to form very defective biofilms in the presence of sub-MIC carbenicillin. The fiuA gene encodes ferrichrome receptor A, involved in the iron acquisition process. Of note, biofilm formation was not decreased in the ΔpchΔpvd mutant defective in the production of pyochelin and pyoverdine, two well-characterized P. aeruginosa siderophore molecules. Moreover, ΔfiuA, a non-polar fiuA deletion mutant, produced a significantly decreased level of elastase, a major virulence determinant. Mouse airway infection experiments revealed that the mutant expressed significantly less pathogenicity. Our results suggest that the fiuA gene has pleiotropic functions that affect P. aeruginosa biofilm development and virulence. The targeting of FiuA could enable the attenuation of P. aeruginosa virulence and may be suitable for the development of a drug that specifically controls the virulence of this important pathogen.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Ferricromo/metabolismo , Pseudomonas aeruginosa/patogenicidade , Fatores de Virulência/genética , Animais , Proteínas da Membrana Bacteriana Externa/metabolismo , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Carbenicilina/farmacologia , Elementos de DNA Transponíveis , Biblioteca Gênica , Ferro/metabolismo , Pulmão/microbiologia , Camundongos , Testes de Sensibilidade Microbiana , Oligopeptídeos/biossíntese , Elastase Pancreática/biossíntese , Fenóis/metabolismo , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/genética , Deleção de Sequência , Tiazóis/metabolismo , Fatores de Virulência/metabolismo
10.
Sci Rep ; 6: 26223, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27194047

RESUMO

Pseudomonas aeruginosa is a Gram-negative bacterium of clinical significance. Although the genome of PAO1, a prototype strain of P. aeruginosa, has been extensively studied, approximately one-third of the functional genome remains unknown. With the emergence of antibiotic-resistant strains of P. aeruginosa, there is an urgent need to develop novel antibiotic and anti-virulence strategies, which may be facilitated by an approach that explores P. aeruginosa gene function in systems-level models. Here, we present a genome-wide functional network of P. aeruginosa genes, PseudomonasNet, which covers 98% of the coding genome, and a companion web server to generate functional hypotheses using various network-search algorithms. We demonstrate that PseudomonasNet-assisted predictions can effectively identify novel genes involved in virulence and antibiotic resistance. Moreover, an antibiotic-resistance network based on PseudomonasNet reveals that P. aeruginosa has common modular genetic organisations that confer increased or decreased resistance to diverse antibiotics, which accounts for the pervasiveness of cross-resistance across multiple drugs. The same network also suggests that P. aeruginosa has developed mechanism of trade-off in resistance across drugs by altering genetic interactions. Taken together, these results clearly demonstrate the usefulness of a genome-scale functional network to investigate pathogenic systems in P. aeruginosa.


Assuntos
Farmacorresistência Bacteriana , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Fatores de Virulência/análise , Biologia Computacional , Redes Reguladoras de Genes , Genes Bacterianos , Biologia de Sistemas
11.
Artigo em Inglês | MEDLINE | ID: mdl-27900286

RESUMO

Vibrio cholerae, a Gram-negative bacterium, is the causative agent of pandemic cholera. Previous studies have shown that the survival of the seventh pandemic El Tor biotype V. cholerae strain N16961 requires production of acetoin in a glucose-rich environment. The production of acetoin, a neutral fermentation end-product, allows V. cholerae to metabolize glucose without a pH drop, which is mediated by the production of organic acid. This finding suggests that inhibition of acetoin fermentation can result in V. cholerae elimination by causing a pH imbalance under glucose-rich conditions. Here, we developed a simple high-throughput screening method and identified an inducer of medium acidification (iMAC). Of 8364 compounds screened, we identified one chemical, 5-(4-chloro-2-nitrobenzoyl)-6-hydroxy-1,3-dimethylpyrimidine-2,4(1H,3H)-dione, that successfully killed glucose-metabolizing N16961 by inducing acidic stress. When N16961 was grown with abundant glucose in the presence of iMAC, acetoin production was completely suppressed and concomitant accumulation of lactate and acetate was observed. Using a beta-galactosidase activity assay with a single-copy palsD::lacZ reporter fusion, we show that that iMAC likely inhibits acetoin production at the transcriptional level. Thin-layer chromatography revealed that iMAC causes a significantly reduced accumulation of intracellular (p)ppGpp, a bacterial stringent response alarmone known to positively regulate acetoin production. In vivo bacterial colonization and fluid accumulation were also markedly decreased after iMAC treatment. Finally, we demonstrate iMAC-induced bacterial killing for 22 different V. cholerae strains belonging to diverse serotypes. Together, our results suggest that iMAC, acting as a metabolic modulator, has strong potential as a novel antibacterial agent for treatment against cholera.


Assuntos
Antibacterianos/farmacologia , Metabolismo dos Carboidratos/efeitos dos fármacos , Glucose/metabolismo , Vibrio cholerae/efeitos dos fármacos , Vibrio cholerae/crescimento & desenvolvimento , Vibrio cholerae/metabolismo , Acetoína/metabolismo , Ácidos/metabolismo , Animais , Antibacterianos/química , Metabolismo dos Carboidratos/genética , Cólera/tratamento farmacológico , Cólera/microbiologia , Cromatografia em Camada Fina , Testes Imunológicos de Citotoxicidade , Modelos Animais de Doenças , Escherichia coli/genética , Fermentação , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Concentração de Íons de Hidrogênio , Camundongos , Viabilidade Microbiana , Microscopia Eletrônica de Varredura , Vibrio/classificação , Vibrio cholerae/genética , beta-Galactosidase/análise
12.
Environ Microbiol Rep ; 6(6): 730-7, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25756126

RESUMO

Caenorhabditis elegans, originally isolated from soil, is a nematode used in various fields of biological research including host­microbe interaction. While bacterial pathogens responsible for human infections have been actively studied in C. elegans, very few bacterial species that provide beneficial effects on C. elegans have been reported. Here, we tested several bacterial soil isolates and then characterized the effects of Lysinibacillus sphaericus on C. elegans growth-related phenotypes. Worms fed with L. sphaericus lived significantly longer than those growing with typical Escherichia coli OP50. Early- and juvenile-stage growth was also highly stimulated by L. sphaericus; body size at 28 h post-hatching was > 2 times larger than OP50-fed worms and L. sphaericus-fed worms moved through the larval stage development more rapidly than control worms. In addition, significantly elevated fertilization was observed in worms fed with L. sphaericus (∼ 8 h faster than the control group). Furthermore, growth with L. sphaericus resulted in the production of larger numbers of progeny than the control growth with OP50. Worms grown with L. sphaericus were highly resistant to oxidative, osmotic and infection stresses. Together, our results reveal a novel mode of growth that involves healthy ageing of nematodes.


Assuntos
Bactérias/isolamento & purificação , Fenômenos Fisiológicos Bacterianos , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/microbiologia , Microbiologia do Solo , Animais , Bactérias/classificação , Bactérias/genética , Caenorhabditis elegans/metabolismo , Feminino , Longevidade , Masculino , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA