Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38673225

RESUMO

There are some important advantages presented by metal specimens coated with WIP-C1 (Ni/CrC)-type materials. However, given the coating methods and the stress under dynamic loads, there are issues that need to be taken into account, particularly in terms of the behavior at the interface between the two materials. Using standardized cylindrical 1018 steel specimens uniformly coated with WIP-C1 (Ni/CrC) by cold spraying, this study investigated the fatigue behavior of the specimen as a whole, focusing on the interface areas of the two materials. The fatigue life diagram is given, to a large extent, by the behavior of the base material. As a result, in this work, we have focused not so much on the fatigue behavior of the assembly as on the integrity of the coating material and the defects, failures, etc., that may occur at the interface after a certain number of cycles. The applied load was cyclic fatigue through alternating-symmetric cycles. Scanning optical microscopy was used to observe plastic deformations and crack propagation during the breakage process. It was found that both the base material zone and the cover material zone presented good performance when the maximum stresses were at low values. A fatigue durability curve was also plotted, showing a conventional appearance for a metallic material, slightly influenced by the destruction of the base material interface. At higher maximum stress and, consequently, to large strains, a series of destructions at the interface of the two materials, of different types, were observed and will be highlighted in the paper.

2.
Polymers (Basel) ; 15(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36850147

RESUMO

Due to its physical and mechanical properties, glass-fiber-reinforced polymer (GFRP) is utilized in wind turbine blades. The loads given to the blades of wind turbines, particularly those operating offshore, are relatively significant. In addition to the typical static stresses, there are also large dynamic stresses, which are mostly induced by wind-direction changes. When the maximum stresses resulting from fatigue loading change direction, the reinforcing directions of the material used to manufacture the wind turbine blades must also be considered. In this study, sandwich-reinforced GFRP materials were subjected to tensile testing in three directions. The parameters of the stress-strain curve were identified and identified based on the three orientations in which samples were cut from the original plate. Strain gauge sensors were utilized to establish the three-dimensional elasticity of a material. After a fracture was created by tensile stress, SEM images were taken to highlight the fracture's characteristics. Using finite element analyses, the stress-strain directions were determined. In accordance to the three orientations and the various reinforcements used, it was established that the wind turbine blades are operational.

3.
Polymers (Basel) ; 14(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36235885

RESUMO

In life service, the wind turbine blades are subjected to compound loading: torsion, bending, and traction, all these resulting in the occurrence of normal and tangential stresses. At some points, the equivalent stresses, due to overlapping effects provided by normal and shear stresses, can have high values, close to those for which the structure can reach to the failure point. If the effects of erosion and clashes with foreign bodies are added, the structure of the blade may lose its integrity. Considering both the complex shape of the blade and internal structure used, the mechanical behavior of the blade, such as the rigidity and resistance along the length of the blade, are usually determined with some uncertainty. This paper presents the results obtained in the non-destructive tests at static torsion of a scalable wind turbine blade. The objective of the paper was to determine the variation of the equivalent stress in the most stressed points of the blade, in relation to the torques applied. To determine the points with the highest stress, a finite element analysis was performed on the scalable wind turbine blade. Electrotensiometric transducers were mounted at different points of the blade, determining the main stresses in the respective points, as well as their variation during the torsion test, by subsequent calculations. The determinations were performed by applying the torque in both senses, in relation to the blade axis, thus concluding the values of the equivalent stress in the two cases.

4.
Materials (Basel) ; 15(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36431601

RESUMO

Fatigue behavior of standardized 4340 steel samples uniformly coated with WIP-C1 (Ni/CrC) by cold spray was investigated. In particular, when a crack appeared at the interface between the base material and the coating, the cause of it as well as its shape and size were investigated. Fatigue loading was applied by alternating symmetrical cycles. Scanning electron microscopy was used to study the onset of failure and the subsequent propagation of cracks. The interface between the two materials performed well-in all samples, the initial crack propagation occurred on the surface of the base material, continuing into the coating material and in the interior of the base material. The fatigue durability curve of stress vs. number of cycles (S-N) presented a conventional form for a metallic alloy and the coating material had an influence only on the damage on the surface of the base material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA