Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Biol Chem ; 292(50): 20425-20436, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29061852

RESUMO

Scribble is a highly conserved protein regulator of cell polarity that has been demonstrated to function as a tumor suppressor or, conversely, as an oncogene in a context-dependent manner, and it also controls many physiological processes ranging from immunity to memory. Scribble consists of a leucine-rich repeat domain and four PDZ domains, with the latter being responsible for most of Scribble's complex formation with other proteins. Given the similarities of the Scribble PDZ domain sequences in their binding grooves, it is common for these domains to show overlapping preferences for the same ligand. Yet, Scribble PDZ domains can still exhibit unique binding profiles toward other ligands. This raises the fundamental question as to how these PDZ domains discriminate ligands and exert specificities in Scribble complex formation. To better understand how Scribble PDZ domains direct cell polarity signaling, we investigated here their interactions with the well-characterized Scribble binding partner ß-PIX, a guanine nucleotide exchange factor. We report the interaction profiles of all isolated Scribble PDZ domains with a ß-PIX peptide. We show that Scribble PDZ1 and PDZ3 are the major interactors with ß-PIX and reveal a distinct binding hierarchy in the interactions between the individual Scribble PDZ domains and ß-PIX. Furthermore, using crystal structures of PDZ1 and PDZ3 bound to ß-PIX, we define the structural basis for Scribble's ability to specifically engage ß-PIX via its PDZ domains and provide a mechanistic platform for understanding Scribble-ß-PIX-coordinated cellular functions such as directional cell migration.


Assuntos
Proteínas de Membrana/metabolismo , Modelos Moleculares , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Calorimetria , Sequência Conservada , Cristalografia por Raios X , Células HEK293 , Humanos , Cinética , Ligantes , Proteínas de Membrana/química , Proteínas de Membrana/genética , Mutação , Domínios PDZ , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/química , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Alinhamento de Sequência , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética
2.
PLoS Genet ; 10(5): e1004323, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24852022

RESUMO

Polarity coordinates cell movement, differentiation, proliferation and apoptosis to build and maintain complex epithelial tissues such as the mammary gland. Loss of polarity and the deregulation of these processes are critical events in malignant progression but precisely how and at which stage polarity loss impacts on mammary development and tumourigenesis is unclear. Scrib is a core polarity regulator and tumour suppressor gene however to date our understanding of Scrib function in the mammary gland has been limited to cell culture and transplantation studies of cell lines. Utilizing a conditional mouse model of Scrib loss we report for the first time that Scrib is essential for mammary duct morphogenesis, mammary progenitor cell fate and maintenance, and we demonstrate a critical and specific role for Scribble in the control of the early steps of breast cancer progression. In particular, Scrib-deficiency significantly induced Fra1 expression and basal progenitor clonogenicity, which resulted in fully penetrant ductal hyperplasia characterized by high cell turnover, MAPK hyperactivity, frank polarity loss with mixing of apical and basolateral membrane constituents and expansion of atypical luminal cells. We also show for the first time a role for Scribble in mammalian spindle orientation with the onset of mammary hyperplasia being associated with aberrant luminal cell spindle orientation and a failure to apoptose during the final stage of duct tubulogenesis. Restoring MAPK/Fra1 to baseline levels prevented Scrib-hyperplasia, whereas persistent Scrib deficiency induced alveolar hyperplasia and increased the incidence, onset and grade of mammary tumours. These findings, based on a definitive genetic mouse model provide fundamental insights into mammary duct maturation and homeostasis and reveal that Scrib loss activates a MAPK/Fra1 pathway that alters mammary progenitor activity to drive premalignancy and accelerate tumour progression.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Sistema de Sinalização das MAP Quinases , Neoplasias Mamárias Experimentais/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Animais , Polaridade Celular , Feminino , Homeostase , Hiperplasia , Glândulas Mamárias Animais/patologia , Neoplasias Mamárias Experimentais/patologia , Camundongos , Morfogênese
3.
Mol Cancer ; 14: 169, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26376988

RESUMO

BACKGROUND: The establishment and maintenance of polarity is vital for embryonic development and loss of polarity is a frequent characteristic of epithelial cancers, however the underlying molecular mechanisms remain unclear. Here, we identify a novel role for the polarity protein Scrib as a mediator of epidermal permeability barrier acquisition, skeletal morphogenesis, and as a potent tumor suppressor in cutaneous carcinogenesis. METHODS: To explore the role of Scrib during epidermal development, we compared the permeability of toluidine blue dye in wild-type, Scrib heterozygous and Scrib KO embryonic epidermis at E16.5, E17.5 and E18.5. Mouse embryos were stained with alcian blue and alizarin red for skeletal analysis. To establish whether Scrib plays a tumor suppressive role during skin tumorigenesis and/or progression, we evaluated an autochthonous mouse model of skin carcinogenesis in the context of Scrib loss. We utilised Cre-LoxP technology to conditionally deplete Scrib in adult epidermis, since Scrib KO embryos are neonatal lethal. RESULTS: We establish that Scrib perturbs keratinocyte maturation during embryonic development, causing impaired epidermal barrier formation, and that Scrib is required for skeletal morphogenesis in mice. Analysis of conditional transgenic mice deficient for Scrib specifically within the epidermis revealed no skin pathologies, indicating that Scrib is dispensable for normal adult epidermal homeostasis. Nevertheless, bi-allelic loss of Scrib significantly enhanced tumor multiplicity and progression in an autochthonous model of epidermal carcinogenesis in vivo, demonstrating Scrib is an epidermal tumor suppressor. Mechanistically, we show that apoptosis is the critical effector of Scrib tumor suppressor activity during skin carcinogenesis and provide new insight into the function of polarity proteins during DNA damage repair. CONCLUSIONS: For the first time, we provide genetic evidence of a unique link between skin carcinogenesis and loss of the epithelial polarity regulator Scrib, emphasizing that Scrib exerts a wide-spread tumor suppressive function in epithelia.


Assuntos
Carcinogênese/genética , Epiderme/crescimento & desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Cutâneas/genética , Animais , Carcinogênese/patologia , Diferenciação Celular/genética , Polaridade Celular/genética , Modelos Animais de Doenças , Embrião de Mamíferos , Epiderme/patologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Genes Supressores de Tumor , Humanos , Integrases/genética , Queratinócitos/metabolismo , Queratinócitos/patologia , Camundongos , Camundongos Knockout , Neoplasias Cutâneas/patologia
4.
Exp Cell Res ; 328(2): 249-57, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25179759

RESUMO

Loss of cell polarity and tissue architecture is a hallmark of aggressive epithelial cancers. In addition to serving as an initial barrier to tumorigenesis, evidence in the literature has pointed towards a highly conserved role for many polarity regulators during tumor formation and progression. Here, we review recent developments in the field that have been driven by genetically engineered mouse models that establish the tumor suppressive and context dependent oncogenic function of cell polarity regulators in vivo. These studies emphasize the complexity of the polarity network during cancer formation and progression, and reveal the need to interpret polarity protein function in a cell-type and tissue specific manner. They also highlight how aberrant polarity signaling could provide a novel route for therapeutic intervention to improve our management of malignancies in the clinic.


Assuntos
Polaridade Celular/fisiologia , Neoplasias/fisiopatologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Humanos , Camundongos , Neoplasias/patologia , Transdução de Sinais/fisiologia
5.
Viruses ; 14(11)2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36366514

RESUMO

The repurposing of licenced drugs for use against COVID-19 is one of the most rapid ways to develop new and alternative therapeutic options to manage the ongoing pandemic. Given circa 7817 licenced compounds available from Compounds Australia that can be screened, this paper demonstrates the utility of commercially available ex vivo/3D airway and alveolar tissue models. These models are a closer representation of in vivo studies than in vitro models, but retain the benefits of rapid in vitro screening for drug efficacy. We demonstrate that several existing drugs appear to show anti-SARS-CoV-2 activity against both SARS-CoV-2 Delta and Omicron Variants of Concern in the airway model. In particular, fluvoxamine, as well as aprepitant, everolimus, and sirolimus, has virus reduction efficacy comparable to the current standard of care (remdesivir, molnupiravir, nirmatrelvir). Whilst these results are encouraging, further testing and efficacy studies are required before clinical use can be considered.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Humanos , Pandemias , Pulmão , Antivirais/farmacologia , Antivirais/uso terapêutico
6.
J Mammary Gland Biol Neoplasia ; 15(2): 149-68, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20461450

RESUMO

Epithelial to mesenchymal transition (EMT) and its reversion via mesenchymal to epithelial transition (MET), represent a stepwise cycle of epithelial plasticity that allows for normal tissue remodelling and diversification during development. In particular, epithelial-mesenchymal plasticity is central to many aspects of mammary development and has been proposed to be a key process in breast cancer progression. Such epithelial-mesenchymal plasticity requires complex cellular reprogramming to orchestrate a change in cell shape to an alternate morphology more conducive to migration. During this process, epithelial characteristics, including apical-basal polarity and specialised cell-cell junctions are lost and mesenchymal properties, such as a front-rear polarity associated with weak cell-cell contacts, increased motility, resistance to apoptosis and invasiveness are gained. The ability of epithelial cells to undergo transitions through cell polarity states is a central feature of epithelial-mesenchymal plasticity. These cell polarity states comprise a set of distinct asymmetric distributions of cellular constituents that are fashioned to allow specialized cellular functions, such as the regulated homeostasis of molecules across epithelial barriers, cell migration or cell diversification via asymmetric cell divisions. Each polarity state is engineered using a molecular toolbox that is highly conserved between organisms and cell types which can direct the initiation, establishment and continued maintenance of each asymmetry. Here we discuss how EMT pathways target cell polarity mediators, and how this EMT-dependent change in polarity states impact on the various stages of breast cancer. Emerging evidence places cell polarity at the interface of proliferation and morphology control and as such the changing dynamics within polarity networks play a critical role in normal mammary gland development and breast cancer progression.


Assuntos
Neoplasias da Mama/fisiopatologia , Polaridade Celular/fisiologia , Transdiferenciação Celular , Células Epiteliais/fisiologia , Glândulas Mamárias Humanas/fisiologia , Glândulas Mamárias Humanas/fisiopatologia , Células-Tronco Mesenquimais/fisiologia , Animais , Neoplasias da Mama/patologia , Desdiferenciação Celular , Diferenciação Celular , Progressão da Doença , Feminino , Homeostase , Humanos , Junções Intercelulares , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/fisiologia , Glândulas Mamárias Animais/fisiopatologia , Glândulas Mamárias Humanas/citologia , Neoplasias Mamárias Experimentais/patologia , Neoplasias Mamárias Experimentais/fisiopatologia , Metástase Neoplásica
7.
Dev Cell ; 33(3): 243-4, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25942620

RESUMO

The extracellular signals and corresponding receptors that align the mitotic spindle of symmetrically dividing cells within an epithelial sheet are largely unknown. In this issue of Developmental Cell, Xia et al. (2015) identify semaphorin-plexin signaling as a regulator of spindle orientation critical for kidney development and repair.


Assuntos
Moléculas de Adesão Celular/metabolismo , Divisão Celular/fisiologia , Rim/metabolismo , Morfogênese/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Semaforinas/metabolismo , Transdução de Sinais , Fuso Acromático/metabolismo , Animais , Masculino
8.
PLoS One ; 10(11): e0142655, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26569102

RESUMO

Erythroid enucleation is critical for terminal differentiation of red blood cells, and involves extrusion of the nucleus by orthochromatic erythroblasts to produce reticulocytes. Due to the difficulty of synchronizing erythroblasts, the molecular mechanisms underlying the enucleation process remain poorly understood. To elucidate the cellular program governing enucleation, we utilized a novel chemical screening approach whereby orthochromatic cells primed for enucleation were enriched ex vivo and subjected to a functional drug screen using a 324 compound library consisting of structurally diverse, medicinally active and cell permeable drugs. Using this approach, we have confirmed the role of HDACs, proteasomal regulators and MAPK in erythroid enucleation and introduce a new role for Cyclin-dependent kinases, in particular CDK9, in this process. Importantly, we demonstrate that when coupled with imaging analysis, this approach provides a powerful means to identify and characterize rate limiting steps involved in the erythroid enucleation process.


Assuntos
Eritroblastos/efeitos dos fármacos , Eritroblastos/metabolismo , Eritropoese/efeitos dos fármacos , Eritropoese/fisiologia , Reticulócitos/citologia , Tecnologia Farmacêutica/métodos , Animais , Diferenciação Celular , Núcleo Celular/metabolismo , Separação Celular , Quinase 9 Dependente de Ciclina/metabolismo , Citometria de Fluxo , Histona Desacetilases/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/química , Reticulócitos/fisiologia , Baço/citologia , Baço/efeitos dos fármacos
9.
Neurosurgery ; 58(1): 179-86; discussion 179-86, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16385342

RESUMO

OBJECTIVE: To study the expression and function of the brain-specific proteinase deficient disintegrins, ADAM11 and ADAM22 (a disintegrin and metalloproteinase). METHODS: Specimens of low- and high-grade gliomas and normal brain were analyzed for ADAM11 and ADAM22 expression using Western blotting. The effects of overexpression of ADAM11 and ADAM22 in glioma cells on growth were analyzed using bromodeoxyuridine incorporation linked to immunocytochemistry. Similarly analyzed were the effects on cell proliferation of bacterially expressed glutathione S-transferase fusion proteins with the disintegrin domain of ADAM11 and ADAM22. RESULTS: ADAM22 is expressed in normal brain and some low-grade gliomas, but not in high-grade gliomas, whereas ADAM11 is expressed in all low- and high-grade gliomas. In vitro, ADAM22 inhibits cellular proliferation of glioma derived astrocytes. The growth inhibition appears to be mediated by interactions between the disintegrin domain of ADAM22 and specific integrins expressed on the cell surface. This growth inhibition can be avoided by over-expression of integrin linked kinase. CONCLUSION: ADAM22, a brain-specific cell surface protein, mediates growth inhibition using an integrin dependent pathway. It is expressed in normal brain but not in high-grade gliomas. A related protein, ADAM11, has only a minor effect on cell growth, and its expression is unchanged in low- and high-grade gliomas.


Assuntos
Proteínas ADAM/metabolismo , Encéfalo/citologia , Proliferação de Células , Desintegrinas/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Animais , Encéfalo/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Desintegrinas/genética , Glioma/metabolismo , Glioma/patologia , Glutationa Transferase/genética , Humanos , Integrina alfaVbeta3/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/farmacologia , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/farmacologia , Valores de Referência , Proteínas Supressoras de Tumor/metabolismo
10.
J Cell Sci ; 119(Pt 16): 3296-305, 2006 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16868027

RESUMO

ADAM22 is one of three catalytically inactive ADAM family members highly expressed in the brain. ADAM22 has numerous splice variants, all with considerable cytoplasmic tails of up to 148 amino acids. ADAM22 can act to inhibit cell proliferation, however, it has been suggested that it also acts as an adhesion protein. We identified three 14-3-3 protein members by a yeast two-hybrid screen and show by co-immunoprecipitation that the cytoplasmic domain of ADAM22 can interact with all six 14-3-3 proteins expressed in the brain. In addition, we show that 14-3-3 proteins interact preferentially with the serine phosphorylated precursor form of ADAM22. ADAM22 has two 14-3-3 protein binding consensus motifs; the first binding site, spanning residues 831-834, was shown to be the most crucial for 14-3-3 binding to occur. The interaction between ADAM22 and 14-3-3 proteins is dependent on phosphorylation of ADAM22, but not of 14-3-3 proteins. ADAM22 point mutants lacking functional 14-3-3 protein binding motifs could no longer accumulate efficiently at the cell surface. Deletion of both 14-3-3 binding sites and newly identified ER retention motifs restored localization of ADAM22 at the cell surface. These results reveal a role for 14-3-3 proteins in targeting ADAM22 to the membrane by masking ER retention signals.


Assuntos
Proteínas 14-3-3/metabolismo , Proteínas ADAM/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas 14-3-3/genética , Proteínas ADAM/genética , Sítios de Ligação , Encéfalo/metabolismo , Células Cultivadas , Retículo Endoplasmático/metabolismo , Glioma/metabolismo , Humanos , Imunoprecipitação , Rim/metabolismo , Proteínas do Tecido Nervoso/genética , Fosforilação , Mutação Puntual , Ligação Proteica , Saccharomyces cerevisiae , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA