Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Environ Microbiol ; 23(7): 3614-3626, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33022088

RESUMO

Deep-sea hydrothermal vents are inhabited by complex communities of microbes and their viruses. Despite the importance of viruses in controlling the diversity, adaptation and evolution of their microbial hosts, to date, only eight bacterial and two archaeal viruses isolated from abyssal ecosystems have been described. Thus, our efforts focused on gaining new insights into viruses associated with deep-sea autotrophic archaea. Here, we provide the first evidence of an infection of hyperthermophilic methanogenic archaea by a head-tailed virus, Methanocaldococcus fervens tailed virus 1 (MFTV1). MFTV1 has an isometric head of 50 nm in diameter and a 150 nm-long non-contractile tail. Virions are released continuously without causing a sudden drop in host growth. MFTV1 infects Methanocaldococcus species and is the first hyperthermophilic head-tailed virus described thus far. The viral genome is a double-stranded linear DNA of 31 kb. Interestingly, our results suggest potential strategies adopted by the plasmid pMEFER01, carried by M. fervens, to spread horizontally in hyperthermophilic methanogens. The data presented here open a new window of understanding on how the abyssal mobilome interacts with hyperthermophilic marine archaea.


Assuntos
Vírus de Archaea , Vírus , Archaea/genética , Vírus de Archaea/genética , Ecossistema , Methanocaldococcus
2.
Microb Ecol ; 79(1): 38-49, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31079197

RESUMO

To study the role of exoelectrogens within the trophic network of deep-sea hydrothermal vents, we performed successive subcultures of a hyperthermophilic community from a hydrothermal chimney sample on a mix of electron donors in a microbial fuel cell system. Electrode (the electron acceptor) was swapped every week to enable fresh development from spent media as inoculum. The MFC at 80 °C yielded maximum current production increasing from 159 to 247 mA m-2 over the subcultures. The experiments demonstrated direct production of electric current from acetate, pyruvate, and H2 and indirect production from yeast extract and peptone through the production of H2 and acetate from fermentation. The microorganisms found in on-electrode communities were mainly affiliated to exoelectrogenic Archaeoglobales and Thermococcales species, whereas in liquid media, the communities were mainly affiliated to fermentative Bacillales and Thermococcales species. The work shows interactions between fermentative microorganisms degrading complex organic matter into fermentation products that are then used by exoelectrogenic microorganisms oxidizing these reduced compounds while respiring on a conductive support. The results confirmed that with carbon cycling, the syntrophic relations between fermentative microorganisms and exoelectrogens could enable some microbes to survive as biofilm in extremely unstable conditions. Graphical Abstract Schematic representation of cross-feeding between fermentative and exoelectrogenic microbes on the surface of the conductive support. B, Bacillus/Geobacillus spp.; Tc, Thermococcales; Gg, Geoglobus spp.; Py, pyruvate; Ac, acetate.


Assuntos
Archaea/química , Archaea/fisiologia , Fontes Hidrotermais/microbiologia , Acetatos/metabolismo , Archaea/classificação , Archaea/genética , Biofilmes , Eletricidade , Eletrodos/microbiologia , Fermentação , Hidrogênio/metabolismo , Oxirredução , Ácido Pirúvico/metabolismo
3.
Int J Syst Evol Microbiol ; 66(8): 3142-3149, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27189596

RESUMO

A novel hyperthermophilic, piezophilic, anaerobic archaeon, designated NCB100T, was isolated from a hydrothermal vent flange fragment collected in the Guaymas basin at the hydrothermal vent site named 'Rebecca's Roost' at a depth of 1997 m. Enrichment and isolation were performed at 100 °C under atmospheric pressure. Cells of strain NCB100T were highly motile, irregular cocci with a diameter of ~1 µm. Growth was recorded at temperatures between 70 and 112 °C (optimum 105 °C) and hydrostatic pressures of 0.1-80 MPa (optimum 40-50 MPa). Growth was observed at pH 3.5-8.5 (optimum pH 7) and with 1.5-7 % NaCl (optimum at 2.5-3 %). Strain NCB100T was a strictly anaerobic chemo-organoheterotroph and grew on complex proteinaceous substrates such as yeast extract, peptone and tryptone, as well as on glycogen and starch. Elemental sulfur was required for growth and was reduced to hydrogen sulfide. The fermentation products from complex proteinaceous substrates were CO2 and H2. The G+C content of the genomic DNA was 41.3 %. Phylogenetic analysis of the 16S rRNA gene sequence revealed that strain NCB100T belongs to the genus Pyrococcus, showing 99 % similarity with the other described species of the genus Pyrococcus. On the basis of physiological characteristics, DNA G+C content, similarity level between ribosomal proteins and an average nucleotide identity value of 79 %, strain NCB100T represents a novel species for which the name Pyrococcus kukulkanii sp. nov. is proposed. The type strain is NCB100T (=DSM 101590T=Souchothèque de Bretagne BG1337T).


Assuntos
Fontes Hidrotermais/microbiologia , Filogenia , Pyrococcus/classificação , Água do Mar/microbiologia , Composição de Bases , DNA Arqueal/genética , Temperatura Alta , Pressão Hidrostática , Pyrococcus/genética , Pyrococcus/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
4.
Mol Microbiol ; 94(4): 803-14, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25171083

RESUMO

TET aminopeptidases assemble as large homo-dodecameric complexes. The reason why prokaryotic genomes often encode a diverse set of TET peptidases homologues remains unclear. In the archaeon Pyrococcus horikoshii, PhTET1, PhTET2 and PhTET3 homo-oligomeric particles have been proposed to work in concert to breakdown intracellular polypeptides. When coexpressed in Escherichia coli, the PhTET2 and PhTET3 proteins were found to assemble efficiently as heteromeric complexes. Biophysical analysis demonstrated that these particles possess the same quaternary structure as the homomeric TET dodecamers. The same hetero-oligomeric complexes were immunodetected in P. horikoshii cell extracts analysed by sucrose gradient fractionation and ion exchange chromatography. The biochemical activity of a purified hetero-oligomeric TET particle, assessed on chromogenic substrates and on a complex mixture of peptides, reveals that it displays higher efficiency than an equivalent combination of homo-oligomeric TET particles. Interestingly, phylogenetic analysis shows that PhTET2 and PhTET3 are paralogous proteins that arose from gene duplication in the ancestor of Thermococcales. Together, these results establish that the PhTET2 and PhTET3 proteins are two subunits of the same enzymatic complex aimed at the destruction of polypeptidic chains of very different composition. This is the first report for such a mechanism intended to improve multi-enzymatic complex efficiency among exopeptidases.


Assuntos
Aminopeptidases/metabolismo , Peptídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Pyrococcus horikoshii/enzimologia , Pyrococcus horikoshii/metabolismo , Aminopeptidases/genética , Fenômenos Biofísicos , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Complexo de Endopeptidases do Proteassoma/genética , Multimerização Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
5.
Appl Environ Microbiol ; 81(10): 3451-9, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25769831

RESUMO

In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic Archaea were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic Methanococcoides burtonii relatives and several new autotrophic Methanogenium lineages, confirming the cooccurrence of Methanosarcinales and Methanomicrobiales methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.


Assuntos
Archaea/isolamento & purificação , Archaea/metabolismo , Sedimentos Geológicos/microbiologia , Metano/metabolismo , Água do Mar/microbiologia , Archaea/classificação , Archaea/genética , Biodiversidade , California , Dados de Sequência Molecular , Filogenia , Água do Mar/química
6.
Int J Syst Evol Microbiol ; 65(9): 3097-3102, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26296351

RESUMO

A novel, anaerobic, chemo-organotrophic bacterium, designated strain Ra1766H(T), was isolated from sediments of the Guaymas basin (Gulf of California, Mexico) taken from a depth of 2002  m. Cells were thin, motile, Gram-stain-positive, flexible rods forming terminal endospores. Strain Ra1766H(T) grew at temperatures of 25-45 °C (optimum 30 °C), pH 6.7-8.1 (optimum 7.5) and in a salinity of 5-60 g l(-1) NaCl (optimum 30 g l(-1)). It was an obligate heterotrophic bacterium fermenting carbohydrates (glucose and mannose) and organic acids (pyruvate and succinate). Casamino acids and amino acids (glutamate, aspartate and glycine) were also fermented. The main end products from glucose fermentation were acetate, butyrate, ethanol, H2 and CO2. Sulfate, sulfite, thiosulfate, elemental sulfur, fumarate, nitrate, nitrite and Fe(III) were not used as terminal electron acceptors. The predominant cellular fatty acids were C14  : 0, C16 : 1ω7, C16 : 1ω7 DMA and C16 : 0. The main polar lipids consisted of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and phospholipids. The G+C content of the genomic DNA was 33.7 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain Ra1766H(T) was affiliated to cluster XI of the order Clostridiales, phylum Firmicutes. The closest phylogenetic relative of Ra1766H(T) was Geosporobacter subterraneus (94.2% 16S rRNA gene sequence similarity). On the basis of phylogenetic inference and phenotypic properties, strain Ra1766H(T) ( = DSM 27501(T) = JCM 19377(T)) is proposed to be the type strain of a novel species of a novel genus, named Crassaminicella profunda.


Assuntos
Bactérias Anaeróbias , Bactérias Anaeróbias/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , California , DNA Bacteriano/genética , Ácidos Graxos/química , Fermentação , Compostos Férricos , Bactérias Gram-Positivas/genética , México , Dados de Sequência Molecular , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sulfatos/metabolismo
7.
Extremophiles ; 19(3): 597-617, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25778451

RESUMO

Active hydrothermal chimneys host diverse microbial communities exhibiting various metabolisms including those involved in various biogeochemical cycles. To investigate microbe-mineral-fluid interactions in hydrothermal chimney and the driver of microbial diversity, a cultural approach using a gas-lift bioreactor was chosen. An enrichment culture was performed using crushed active chimney sample as inoculum and diluted hydrothermal fluid from the same vent as culture medium. Daily sampling provided time-series access to active microbial diversity and medium composition. Active archaeal and bacterial communities consisted mainly of sulfur, sulfate and iron reducers and hydrogen oxidizers with the detection of Thermococcus, Archaeoglobus, Geoglobus, Sulfurimonas and Thermotoga sequences. The simultaneous presence of active Geoglobus sp. and Archaeoglobus sp. argues against competition for available carbon sources and electron donors between sulfate and iron reducers at high temperature. This approach allowed the cultivation of microbial populations that were under-represented in the initial environmental sample. The microbial communities are heterogeneously distributed within the gas-lift bioreactor; it is unlikely that bulk mineralogy or fluid chemistry is the drivers of microbial community structure. Instead, we propose that micro-environmental niche characteristics, created by the interaction between the mineral grains and the fluid chemistry, are the main drivers of microbial diversity in natural systems.


Assuntos
Reatores Biológicos/microbiologia , Fontes Hidrotermais/microbiologia , Microbiota , Minerais/metabolismo , Archaea/isolamento & purificação , Archaea/metabolismo , Bactérias/isolamento & purificação , Bactérias/metabolismo , Fontes Hidrotermais/química , Minerais/análise , Oxirredução , Enxofre/metabolismo
8.
J Biol Chem ; 288(31): 22542-54, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23696647

RESUMO

Tetrahedral (TET) aminopeptidases are large polypeptide destruction machines present in prokaryotes and eukaryotes. Here, the rules governing their assembly into hollow 12-subunit tetrahedrons are addressed by using TET2 from Pyrococcus horikoshii (PhTET2) as a model. Point mutations allowed the capture of a stable, catalytically active precursor. Small angle x-ray scattering revealed that it is a dimer whose architecture in solution is identical to that determined by x-ray crystallography within the fully assembled TET particle. Small angle x-ray scattering also showed that the reconstituted PhTET2 dodecameric particle displayed the same quaternary structure and thermal stability as the wild-type complex. The PhTET2 assembly intermediates were characterized by analytical ultracentrifugation, native gel electrophoresis, and electron microscopy. They revealed that PhTET2 assembling is a highly ordered process in which hexamers represent the main intermediate. Peptide degradation assays demonstrated that oligomerization triggers the activity of the TET enzyme toward large polypeptidic substrates. Fractionation experiments in Pyrococcus and Halobacterium cells revealed that, in vivo, the dimeric precursor co-exists together with assembled TET complexes. Taken together, our observations explain the biological significance of TET oligomerization and suggest the existence of a functional regulation of the dimer-dodecamer equilibrium in vivo.


Assuntos
Peptídeo Hidrolases/metabolismo , Pyrococcus horikoshii/enzimologia , Clonagem Molecular , Dimerização , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/isolamento & purificação , Conformação Proteica
9.
Environ Microbiol ; 16(9): 2777-90, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24238139

RESUMO

SUMMARY: The Sonora Margin cold seeps present on the seafloor a patchiness pattern of white microbial mats surrounded by polychaete and gastropod beds. These surface assemblages are fuelled by abundant organic inputs sedimenting from the water column and upward-flowing seep fluids. Elevated microbial density was observed in the underlying sediments. A previous study on the same samples identified anaerobic oxidation of methane (AOM) as the potential dominant archaeal process in these Sonora Margin sediments, probably catalysed by three clades of archaeal anaerobic methanotrophs (ANME-1, ANME-2 and ANME-3) associated with bacterial syntrophs. In this study, molecular surveys and microscopic observations investigating the diversity of Bacteria involved in AOM process, as well as the environmental parameters affecting the composition and the morphologies of AOM consortia in the Sonora Margin sediments were carried out. Two groups of Bacteria were identified within the AOM consortia, the Desulfosarcina/Desulfococcus SEEP SRB-1a group and a Desulfobulbus-related group. These bacteria showed different niche distributions, association specificities and consortia architectures, depending on sediment surface communities, geochemical parameters and ANME-associated phylogeny. Therefore, the syntrophic AOM process appears to depend on sulphate-reducing bacteria with different ecological niches and/or metabolisms, in a biofilm-like organic matrix.


Assuntos
Ecossistema , Sedimentos Geológicos/microbiologia , Metano/metabolismo , Consórcios Microbianos , Bactérias Redutoras de Enxofre/classificação , DNA Bacteriano/genética , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA , Bactérias Redutoras de Enxofre/metabolismo
10.
Appl Environ Microbiol ; 80(15): 4626-39, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24837380

RESUMO

Next-generation sequencing (NGS) opens up exciting possibilities for improving our knowledge of environmental microbial diversity, allowing rapid and cost-effective identification of both cultivated and uncultivated microorganisms. However, library preparation, sequencing, and analysis of the results can provide inaccurate representations of the studied community compositions. Therefore, all these steps need to be taken into account carefully. Here we evaluated the effects of DNA extraction methods, targeted 16S rRNA hypervariable regions, and sample origins on the diverse microbes detected by 454 pyrosequencing in marine cold seep and hydrothermal vent sediments. To assign the reads with enough taxonomic precision, we built a database with about 2,500 sequences from Archaea and Bacteria from deep-sea marine sediments, affiliated according to reference publications in the field. Thanks to statistical and diversity analyses as well as inference of operational taxonomic unit (OTU) networks, we show that (i) while DNA extraction methods do not seem to affect the results for some samples, they can lead to dramatic changes for others; and (ii) the choice of amplification and sequencing primers also considerably affects the microbial community detected in the samples. Thereby, very different proportions of pyrosequencing reads were obtained for some microbial lineages, such as the archaeal ANME-1, ANME-2c, and MBG-D and deltaproteobacterial subgroups. This work clearly indicates that the results from sequencing-based analyses, such as pyrosequencing, should be interpreted very carefully. Therefore, the combination of NGS with complementary approaches, such as fluorescence in situ hybridization (FISH)/catalyzed reporter deposition (CARD)-FISH or quantitative PCR (Q-PCR), would be desirable to gain a more comprehensive picture of environmental microbial communities.


Assuntos
Métodos Analíticos de Preparação de Amostras/métodos , Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Biodiversidade , Sedimentos Geológicos/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Primers do DNA/genética , DNA Arqueal/genética , DNA Arqueal/isolamento & purificação , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Ecossistema , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/isolamento & purificação
11.
Int J Syst Evol Microbiol ; 64(Pt 9): 3307-3313, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24994778

RESUMO

A novel obligately anaerobic, extremely thermophilic, organotrophic bacterium, strain Rift-s3(T), was isolated from a deep-sea sample containing Riftia pachyptila sheath from Guaymas Basin, Gulf of California. Cells of the novel isolate were rods, 0.3-0.8 µm in width and 1.5-10 µm in length, surrounded by a sheath-like structure (toga). Strain Rift-s3(T) grew at temperatures ranging from 44 to 75 °C, at pH 5.5 to 8.0, and with NaCl concentrations of 3 to 60 g l(-1). Under optimum conditions (65 °C, pH 6.0, NaCl 25 g l(-1)), the doubling time was 30 min. The isolate was able to ferment mono-, oligo- and polysaccharides including cellulose, chitin, xylan and pectin, and proteins including ß-keratins, casein and gelatin. Acetate, hydrogen and carbon dioxide were the main products of glucose fermentation. The G+C content of the DNA was 30 mol%. Phylogenetic analysis of 16S rRNA gene sequences showed the affiliation of strain Rift-s3(T) with the genus Thermosipho, with Thermosipho atlanticus Ob7(T) as the closest relative (96.5 % 16S rRNA gene sequence similarity). Based on the phylogenetic analysis and physiological properties of the novel isolate we propose a novel species of the genus Thermosipho, Thermosipho activus sp. nov., with Rift-s3(T) ( = DSM 26467(T) = VKM B-2803(T)) as the type strain.


Assuntos
Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/classificação , Filogenia , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , California , DNA Bacteriano/genética , Ácidos Graxos/química , Fermentação , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/genética , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/isolamento & purificação , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
12.
Int J Syst Evol Microbiol ; 63(Pt 8): 3019-3023, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23396717

RESUMO

A novel obligately anaerobic, non-spore-forming, rod-shaped mesophilic, halophilic, Gram-stain-negative bacterium, was isolated from sediments of Guaymas Basin. The strain, designated Ra1766G1(T), grew at 20-40 °C (optimum, 30-35 °C) and at pH 6.0-8.0 (optimum, pH 6.5-7.5). It required 0.5-7.5 % NaCl (optimum, 2-3 %) for growth. Sulfate, thiosulfate, elemental sulfur, sulfite, fumarate, nitrate and nitrite were not used as terminal electron acceptors. Strain Ra1766G1(T) used cellobiose, glucose, mannose, maltose, arabinose, raffinose, galactose, ribose, sucrose, pyruvate and xylose as electron donors. The main fermentation product from glucose metabolism was acetate. The predominant cellular fatty acids were anteiso-C15 : 0, iso-C15 : 0, anteiso DMA-C15 : 0 and C16 : 0. The main polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, iso-DMA-C15 : 0 glycolipids and phospholipids. The G+C content of the genomic DNA was 31.2 mol%. The closest phylogenetic relatives of strain Ra1766G1(T) were Natranaerovirga pectinivora AP3(T) (92.4 % 16S rRNA gene sequence similarity), Natranaerovirga hydrolytica APP2(T)(90.2 %) and Defluviitalea saccharophila 6LT2(T) (88.9 %). On the basis of phylogenetic inference and phenotypic properties, strain Ra1766G1(T) represents a novel species of a new genus for which the name Vallitalea guaymasensis is proposed. The type strain of the type species is Ra1766G1(T) ( = DSM 24848(T) = JCM17997(T)).


Assuntos
Bactérias Anaeróbias/classificação , Sedimentos Geológicos/microbiologia , Filogenia , Bactérias Anaeróbias/genética , Bactérias Anaeróbias/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/análise , Dados de Sequência Molecular , Oceano Pacífico , Fosfolipídeos/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
13.
Microb Genom ; 8(9)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36136081

RESUMO

This paper reports on the genome analysis of strain F29 representing a new species of the genus Thermosulfurimonas. This strain, isolated from the Lucky Strike hydrothermal vent field on the Mid-Atlantic Ridge, is able to grow by disproportionation of S0 with CO2 as a carbon source. Strain F29 possesses a genome of 2,345,565 bp, with a G+C content of 58.09%, and at least one plasmid. The genome analysis revealed complete sets of genes for CO2 fixation via the Wood-Ljungdahl pathway, for sulphate-reduction and for hydrogen oxidation, suggesting the involvement of the strain into carbon, sulphur, and hydrogen cycles of deep-sea hydrothermal vents. Strain F29 genome encodes also several CRISPR sequences, suggesting that the strain may be subjected to viral attacks. Comparative genomics was carried out to decipher sulphur disproportionation pathways. Genomes of sulphur-disproportionating bacteria from marine hydrothermal vents were compared to the genomes of non-sulphur-disproportionating bacteria. This analysis revealed the ubiquitous presence in these genomes of a molybdopterin protein consisting of a large and a small subunit, and an associated chaperone. We hypothesize that these proteins may be involved in the process of elemental sulphur disproportionation.


Assuntos
Fontes Hidrotermais , Bactérias/genética , Carbono , Dióxido de Carbono , Genômica , Hidrogênio , Fontes Hidrotermais/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Sulfatos , Enxofre/metabolismo
14.
ISME J ; 15(12): 3423-3436, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34088977

RESUMO

Removal of reducing equivalents is an essential catabolic process for all microorganisms to maintain their internal redox balance. The electron disposal by chemoorganotrophic Thermococcales generates H2 by proton reduction or H2S in presence of S0. Although in the absence of S0 growth of these (hyper)thermopiles was previously described to be H2-limited, it remains unclear how Thermococcales could be present in H2-rich S0-depleted habitats. Here, we report that 12 of the 47 strains tested, distributed among all three orders of Thermococcales, could grow without S0 at 0.8 mM dissolved H2 and that tolerance to H2 was always associated with formate production. Two conserved gene clusters coding for a formate hydrogenlyase (FHL) and a putative formate dehydrogenase-NAD(P)H-oxidoreductase were only present in H2-dependent formate producers, and were both systematically associated with a formate dehydrogenase and a formate transporter. As the reaction involved in this alternative pathway for disposal of reducing equivalents was close to thermodynamic equilibrium, it was strongly controlled by the substrates-products concentration ratio even in the presence of S0. Moreover, experimental data and thermodynamic modelling also demonstrated that H2-dependent CO2 reduction to formate could occur within a large temperature range in contrasted hydrothermal systems, suggesting it could also provide an adaptive advantage.


Assuntos
Hidrogenase , Thermococcales , Formiatos , Hidrogênio/metabolismo , Hidrogenase/metabolismo , Proteínas de Membrana Transportadoras , Oxirredução , Enxofre/metabolismo , Thermococcales/metabolismo
15.
Syst Appl Microbiol ; 44(1): 126176, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33422731

RESUMO

A novel thermophilic, microaerophilic and anaerobic, hydrogen- sulphur- and thiosulphate-oxidising bacterium, designated MO1340T, was isolated from a deep-sea hydrothermal chimney collected from the Lucky Strike hydrothermal vent field on the Mid-Atlantic Ridge. Cells were short, motile rods of 1.4-2.2µm length and 0.5-0.8µm width. Optimal growth was observed for a NaCl concentration of 2.5 % (w/v) at pH 6.5. As for other members of the genus Persephonella, strain MO1340T was strictly chemolithoautotrophic and could oxidise hydrogen, elemental sulphur or thiosulphate using oxygen as electron acceptor. Anaerobic nitrate reduction using hydrogen could also be performed. Each catabolic reaction had a different optimal growth temperature (65 to 75°C) and an optimal dissolved oxygen concentration (11.4 to 119.7 µM at 70°C for aerobic reactions) that varied according to the electron donors utilised. These experimental results are consistent with the distribution of these catabolic substrates along the temperature gradient observed in active hydrothermal systems. They strongly suggest that this adaptive strategy could confer a selective advantage for strain MO1340T in the dynamic part of the ecosystem where hot, reduced hydrothermal fluid mixes with cold, oxygenated seawater. Phylogenetic analysis indicated that strain MO1340T was a member of the genus Persephonella within the order Hydrogenothermales as it shared a 16S rRNA gene sequence similarity <95.5 % and ANI respectively 75.66 % with closest described Persephonella (P. hydrogeniphila 29WT). On the basis of the physiological and genomic properties of the new isolate, the name Persephonella atlantica sp. nov. is proposed. The type strain is MO1340T (=UBOCC-M-3359T =JCM 34026T).


Assuntos
Bactérias/classificação , Fontes Hidrotermais/microbiologia , Filogenia , Oceano Atlântico , Bactérias/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Temperatura Alta , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
16.
Sci Rep ; 11(1): 14782, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34285254

RESUMO

Deep-sea hydrothermal vents are extreme and complex ecosystems based on a trophic chain. We are still unsure of the identities of the first colonizers of these environments and their metabolism, but they are thought to be (hyper)thermophilic autotrophs. Here we investigate whether the electric potential observed across hydrothermal chimneys could serve as an energy source for these first colonizers. Experiments were performed in a two-chamber microbial electrochemical system inoculated with deep-sea hydrothermal chimney samples, with a cathode as sole electron donor, CO2 as sole carbon source, and nitrate, sulfate, or oxygen as electron acceptors. After a few days of culturing, all three experiments showed growth of electrotrophic biofilms consuming the electrons (directly or indirectly) and producing organic compounds including acetate, glycerol, and pyruvate. Within the biofilms, the only known autotroph species retrieved were members of Archaeoglobales. Various heterotrophic phyla also grew through trophic interactions, with Thermococcales growing in all three experiments as well as other bacterial groups specific to each electron acceptor. This electrotrophic metabolism as energy source driving initial microbial colonization of conductive hydrothermal chimneys is discussed.

17.
Microorganisms ; 9(12)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34946077

RESUMO

Recent studies have shown the presence of an abiotic electrical current across the walls of deep-sea hydrothermal chimneys, allowing the growth of electroautotrophic microbial communities. To understand the role of the different phylogenetic groups and metabolisms involved, this study focused on electrotrophic enrichment with nitrate as electron acceptor. The biofilm density, community composition, production of organic compounds, and electrical consumption were monitored by FISH confocal microscopy, qPCR, metabarcoding, NMR, and potentiostat measurements. A statistical analysis by PCA showed the correlation between the different parameters (qPCR, organic compounds, and electron acceptors) in three distinct temporal phases. In our conditions, the Archaeoglobales have been shown to play a key role in the development of the community as the first colonizers on the cathode and the first producers of organic compounds, which are then used as an organic source by heterotrophs. Finally, through subcultures of the community, we showed the development of a greater biodiversity over time. This observed phenomenon could explain the biodiversity development in hydrothermal contexts, where energy sources are transient and unstable.

18.
Nat Commun ; 12(1): 6861, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824206

RESUMO

Carbon budgets of hydrothermal plumes result from the balance between carbon sinks through plume chemoautotrophic processes and carbon release via microbial respiration. However, the lack of comprehensive analysis of the metabolic processes and biomass production rates hinders an accurate estimate of their contribution to the deep ocean carbon cycle. Here, we use a biogeochemical model to estimate the autotrophic and heterotrophic production rates of microbial communities in hydrothermal plumes and validate it with in situ data. We show how substrate limitation might prevent net chemolithoautotrophic production in hydrothermal plumes. Elevated prokaryotic heterotrophic production rates (up to 0.9 gCm-2y-1) compared to the surrounding seawater could lead to 0.05 GtCy-1 of C-biomass produced through chemoorganotrophy within hydrothermal plumes, similar to the Particulate Organic Carbon (POC) export fluxes reported in the deep ocean. We conclude that hydrothermal plumes must be accounted for as significant deep sources of POC in ocean carbon budgets.


Assuntos
Biomassa , Processos Heterotróficos/fisiologia , Fontes Hidrotermais/microbiologia , Oceanos e Mares , Ciclo do Carbono , Crescimento Quimioautotrófico/fisiologia , Fontes Hidrotermais/química , Microbiota , Modelos Teóricos , Células Procarióticas/metabolismo , Água do Mar/química , Água do Mar/microbiologia
19.
Environ Microbiol ; 11(8): 1983-97, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19689705

RESUMO

Two novel, thermophilic piezophiles, capable of chemolithoautotrophic growth, are successfully cultivated and isolated from a black smoker chimney at the TAG field (Mid Atlantic Ridge: MAR) by using a piezophilic cultivation technique. Both strains (strains 106 and 108) represent dominant cultivated populations of the microbial communities in the chimney surface habitat. Strain 106 represents typically thin, long spiral cells under the piezophilic growth condition but short bent cells under the non-piezophilic condition. It is a strictly chemolithoautotrophic gammaproteobacterium using reduced sulfur compounds as the electron donors, and nitrate and O(2) as the electron acceptors. Based on the 16S rRNA gene sequence, strain 106 would represent a novel genus of the previously uncultivated group (Symbiont Group I; a potentially novel family) within the Gammaproteobacteria, and 'Thioprofundum lithotrophica' gen. nov., sp. nov. is proposed. Strain 108 is a short, oval rod at any of the growth pressures. It is a facultative chemoautotroph, capable of both chemolithoautotrophic growth with H(2) and S oxidations and organotrophic growth with complex organics or organic acids using nitrate and O(2) as the electron acceptors. The chemolithoautotrophic growth is strictly piezophilic and under the organotrophic growth condition, it grows at conventional pressures (0.1 MPa). Strain 108 is phylogenetically distinctive from any of the previously described genera of the family Rhodobacteraceae within the Alphaproteobacteria, and 'Piezobacter thermophilus' gen. nov., sp. nov. is proposed. The piezophilic cultivation technique can be a powerful tool to isolate and characterize the previously uncultivated phylotypes in the deep-sea hydrothermal vent environments.


Assuntos
Gammaproteobacteria/isolamento & purificação , Rhodobacteraceae/isolamento & purificação , Água do Mar/microbiologia , Processos Autotróficos , Sequência de Bases , Impressões Digitais de DNA , Ecossistema , Ácidos Graxos/metabolismo , Gammaproteobacteria/citologia , Gammaproteobacteria/metabolismo , Temperatura Alta , Dados de Sequência Molecular , Filogenia , Pressão , RNA Ribossômico 16S/genética , Rhodobacteraceae/citologia , Rhodobacteraceae/metabolismo
20.
Extremophiles ; 13(4): 595-608, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19381756

RESUMO

Both cultivation and molecular techniques were used to investigate the microbial diversity and dynamic of a deep-sea vent chimney. The enrichment cultures performed in a gas-lift bioreactor were inoculated with a black smoker chimney sample collected on TAG site on the mid-Atlantic ridge. To mimic as close as possible environmental conditions, the cultures were performed in oligotrophic medium with nitrogen, hydrogen and carbon dioxide (N(2)/H(2)/CO(2)) gas sweeping. Also, the temperature was first settled at a temperature of 85 degrees C and colloidal sulphur was added. Then, the temperature was lowered to 60 degrees C and sulphur was omitted. Archaeal and bacterial diversity was studied in both culture and natural samples. Through 16S rRNA gene sequences analysis of the enrichment cultures microorganisms affiliated to Archeoglobales, Thermococcales were detected in both conditions while, Deferribacterales and Thermales were detected only at 65 degrees C in the absence of sulphur. Single-stranded conformational polymorphism and quantitative PCR permit to study the microbial community dynamic during the two enrichment cultures. The effect of environmental changes (modification of culture conditions), i.e. temperature, medium composition, electron donors and acceptors availability were shown to affect the microbial community in culture, as this would happen in their environment. The effect of environmental changes, i.e. temperature and medium composition was shown to affect the microbial community in culture, as this could happen in their environment. The modification of culture conditions, such as temperature, organic matter concentration, electron donors and acceptors availability allowed to enrich different population of prokaryotes inhabiting hydrothermal chimneys.


Assuntos
Biodiversidade , Reatores Biológicos , RNA Ribossômico 16S/genética , Dióxido de Carbono/química , Técnicas de Cultura de Células/métodos , Meios de Cultura , Elétrons , Meio Ambiente , Concentração de Íons de Hidrogênio , Reação em Cadeia da Polimerase , Polimorfismo Conformacional de Fita Simples , Análise de Sequência de DNA , Enxofre/química , Temperatura , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA