Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Synth Biol ; 10(12): 3411-3421, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34797069

RESUMO

Optogenetic tools have been proven to be useful in regulating cellular processes via an external signal. Light can be applied with high spatial and temporal precision as well as easily modulated in quantity and quality. Natural photoreceptors of the light oxygen voltage (LOV) domain family have been characterized in depth, especially the LOV2 domain of Avena sativa (As) phototropin 1 and its derivatives. Information on the behavior of LOV2 variants with changes in the photocycle or the light response has been recorded. Here, we applied well-described photocycle mutations on the AsLOV2 domain of a photosensitive transcription factor (psTF) as well as its variant that is part of the photosensitive degron (psd) psd3 in Saccharomyces cerevisiae. In vivo and in vitro measurements revealed that each photoreceptor component of the light-sensitive transcription factor and the psd3 module can be modulated in its light sensitivity by mutations that are known to prolong or shorten the dark-reversion time of AsLOV2. Yet, only two of the mutations showed differences in the in vivo behavior in the context of the psd3 module. For the AsLOV2 domain in the context of the psTF, we observed different characteristics for all four variants. Molecular dynamics simulations showed distinct influences of the shortened Jα helix and the V416L mutation in the context of the psd3 photoreceptor. In conclusion, we demonstrated the tunability of two optogenetic tools with a set of mutations that affect the photocycle of the inherent photoreceptors. As these optogenetic tools are concurrent in their action, pleiotropic effects on target protein abundance are achievable with the simultaneous action of the diverse photoreceptor variants.


Assuntos
Luz , Optogenética , Avena/química , Simulação de Dinâmica Molecular , Fototropinas/metabolismo
2.
ACS Synth Biol ; 8(5): 1026-1036, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-30955324

RESUMO

Optogenetic control of protein activity is a versatile technique to gain control over cellular processes, for example, for biomedical and biotechnological applications. Among other techniques, the regulation of protein abundance by controlling either transcription or protein stability found common use as this controls the activity of any type of target protein. Here, we report modules of an improved variant of the photosensitive degron module and a light-sensitive transcription factor, which we compared to doxycycline-dependent transcriptional control. Given their modularity the combined control of synthesis and stability of a given target protein resulted in the synergistic down regulation of its abundance by light. This combined module exhibits very high switching ratios, profound downregulation of protein abundance at low light-fluxes, and fast protein depletion kinetics. Overall, this synergistic optogenetic multistep control (SOMCo) module is easy to implement and results in a regulation of protein abundance superior to each individual component.


Assuntos
Regulação para Baixo , Optogenética , Proteínas Recombinantes de Fusão/biossíntese , Biologia Sintética/métodos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação para Baixo/efeitos dos fármacos , Doxiciclina/farmacologia , Farmacorresistência Bacteriana/genética , Citometria de Fluxo , Engenharia Genética , Luz , Proteínas Luminescentes/genética , Plasmídeos/genética , Plasmídeos/metabolismo , Estabilidade Proteica/efeitos da radiação , Proteínas Recombinantes de Fusão/genética , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA