RESUMO
"Giving the cells exactly what they need, when they need it" is the core idea behind the proposed bioprocess control strategy: operating bioprocess based on the physiological behavior of the microbial population rather than exclusive monitoring of environmental parameters. We are envisioning to achieve this through the use of genetically encoded biosensors combined with online flow cytometry (FCM) to obtain a time-dependent "physiological fingerprint" of the population. We developed a biosensor based on the glnA promoter (glnAp) and applied it for monitoring the nitrogen-related nutritional state of Escherichia coli. The functionality of the biosensor was demonstrated through multiple cultivation runs performed at various scales-from microplate to 20 L bioreactor. We also developed a fully automated bioreactor-FCM interface for on-line monitoring of the microbial population. Finally, we validated the proposed strategy by performing a fed-batch experiment where the biosensor signal is used as the actuator for a nitrogen feeding feedback control. This new generation of process control, -based on the specific needs of the cells, -opens the possibility of improving process development on a short timescale and therewith, the robustness and performance of fermentation processes.
Assuntos
Reatores Biológicos , Técnicas Biossensoriais , Fermentação , Escherichia coli , NitrogênioRESUMO
Cases of congenital disorders of glycosylation (CDG) have been associated with specific mutations within the gene encoding the human Golgi TMEM165 (transmembrane protein 165), belonging to UPF0016 (uncharacterized protein family 0016), a family of secondary ion transporters. To date, members of this family have been reported to be involved in calcium, manganese, and pH homeostases. Although it has been suggested that TMEM165 has cation transport activity, direct evidence for its Ca2+- and Mn2+-transporting activities is still lacking. Here, we functionally characterized human TMEM165 by heterologously expressing it in budding yeast (Saccharomyces cerevisiae) and in the bacterium Lactococcus lactis Protein production in these two microbial hosts was enhanced by codon optimization and truncation of the putatively autoregulatory N terminus of TMEM165. We show that TMEM165 expression in a yeast strain devoid of Golgi Ca2+ and Mn2+ transporters abrogates Ca2+- and Mn2+-induced growth defects, excessive Mn2+ accumulation in the cell, and glycosylation defects. Using bacterial cells loaded with the fluorescent Fura-2 probe, we further obtained direct biochemical evidence that TMEM165 mediates Ca2+ and Mn2+ influxes. We also used the yeast and bacterial systems to evaluate the impact of four disease-causing missense mutations identified in individuals with TMEM165-associated CDG. We found that a mutation leading to a E108G substitution within the conserved UPF0016 family motif significantly reduces TMEM165 activity. These results indicate that TMEM165 can transport Ca2+ and Mn2+, which are both required for proper protein glycosylation in cells. Our work also provides tools to better understand the pathogenicity of CDG-associated TMEM165 mutations.
Assuntos
Antiporters/metabolismo , Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Complexo de Golgi/metabolismo , Lactococcus lactis/metabolismo , Manganês/metabolismo , Saccharomyces cerevisiae/metabolismo , Antiporters/genética , Proteínas de Transporte de Cátions/genética , Glicosilação , Humanos , Transporte de Íons , Cinética , Manganês/análise , Mutagênese Sítio-Dirigida , Espectrofotometria AtômicaRESUMO
Whooping cough is a highly contagious respiratory disease caused by Bordetella pertussis Despite widespread vaccination, its incidence has been rising alarmingly, and yet, the physiology of B. pertussis remains poorly understood. We combined genome-scale metabolic reconstruction, a novel optimization algorithm, and experimental data to probe the full metabolic potential of this pathogen, using B. pertussis strain Tohama I as a reference. Experimental validation showed that B. pertussis secretes a significant proportion of nitrogen as arginine and purine nucleosides, which may contribute to modulation of the host response. We also found that B. pertussis can be unexpectedly versatile, being able to metabolize many compounds while displaying minimal nutrient requirements. It can grow without cysteine, using inorganic sulfur sources, such as thiosulfate, and it can grow on organic acids, such as citrate or lactate, as sole carbon sources, providing in vivo demonstration that its tricarboxylic acid (TCA) cycle is functional. Although the metabolic reconstruction of eight additional strains indicates that the structural genes underlying this metabolic flexibility are widespread, experimental validation suggests a role of strain-specific regulatory mechanisms in shaping metabolic capabilities. Among five alternative strains tested, three strains were shown to grow on substrate combinations requiring a functional TCA cycle, but only one strain could use thiosulfate. Finally, the metabolic model was used to rationally design growth media with >2-fold improvements in pertussis toxin production. This study thus provides novel insights into B. pertussis physiology and highlights the potential, but also the limitations, of models based solely on metabolic gene content.IMPORTANCE The metabolic capabilities of Bordetella pertussis, the causative agent of whooping cough, were investigated from a systems-level perspective. We constructed a comprehensive genome-scale metabolic model for B. pertussis and challenged its predictions experimentally. This systems approach shed light on new potential host-microbe interactions and allowed us to rationally design novel growth media with >2-fold improvements in pertussis toxin production. Most importantly, we also uncovered the potential for metabolic flexibility of B. pertussis (significantly larger range of substrates than previously alleged; novel active pathways allowing growth in minimal, nearly mineral nutrient combinations where only the carbon source must be organic), although our results also highlight the importance of strain-specific regulatory determinants in shaping metabolic capabilities. Deciphering the underlying regulatory mechanisms appears to be crucial for a comprehensive understanding of B. pertussis's lifestyle and the epidemiology of whooping cough. The contribution of metabolic models in this context will require the extension of the genome-scale metabolic model to integrate this regulatory dimension.
RESUMO
Lactobacillus plantarum is a lactic acid bacterium that produces a racemic mixture of l- and d-lactate from sugar fermentation. The interconversion of lactate isomers is performed by a lactate racemase (Lar) that is transcriptionally controlled by the l-/d-lactate ratio and maximally induced in the presence of l-lactate. We previously reported that the Lar activity depends on the expression of two divergently oriented operons: (i) the larABCDE operon encodes the nickel-dependent lactate racemase (LarA), its maturases (LarBCE), and a lactic acid channel (LarD), and (ii) the larR(MN)QO operon encodes a transcriptional regulator (LarR) and a four-component ABC-type nickel transporter [Lar(MN), in which the M and N components are fused, LarQ, and LarO]. LarR is a novel regulator of the Crp-Fnr family (PrfA group). Here, the role of LarR was further characterized in vivo and in vitro. We show that LarR is a positive regulator that is absolutely required for the expression of Lar activity. Using gel retardation experiments, we demonstrate that LarR binds to a 16-bp palindromic sequence (Lar box motif) that is present in the larR-larA intergenic region. Mutations in the Lar box strongly affect LarR binding and completely abolish transcription from the larA promoter (PlarA). Two half-Lar boxes located between the Lar box and the -35 box of PlarA promote LarR multimerization on DNA, and point mutations within one or both half-Lar boxes inhibit PlarA induction by l-lactate. Gel retardation and footprinting experiments indicate that l-lactate has a positive effect on the binding and multimerization of LarR, while d-lactate antagonizes the positive effect of l-lactate. A possible mechanism of LarR regulation by lactate enantiomers is proposed.
Assuntos
Proteínas de Bactérias/metabolismo , Ácido Láctico/metabolismo , Lactobacillus plantarum/metabolismo , Racemases e Epimerases/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , DNA Bacteriano , DNA Intergênico , Ensaio de Desvio de Mobilidade Eletroforética , Fermentação , Regulação Bacteriana da Expressão Gênica/fisiologia , Ácido Láctico/química , Lactobacillus plantarum/enzimologia , Lactobacillus plantarum/genéticaRESUMO
In many streptococci, competence for natural DNA transformation is regulated by the Rgg-type regulator ComR and the pheromone ComS, which is sensed intracellularly. We compared the ComRS systems of four model streptococcal species using in vitro and in silico approaches, to determine the mechanism of the ComRS-dependent regulation of competence. In all systems investigated, ComR was shown to be the proximal transcriptional activator of the expression of key competence genes. Efficient binding of ComR to DNA is strictly dependent on the presence of the pheromone (C-terminal ComS octapeptide), in contrast with other streptococcal Rgg-type regulators. The 20 bp palindromic ComR-box is the minimal genetic requirement for binding of ComR, and its sequence directly determines the expression level of genes under its control. Despite the apparent species-specific specialization of the ComR-ComS interaction, mutagenesis of ComS residues from Streptococcus thermophilus highlighted an unexpected permissiveness with respect to its biological activity. In agreement, heterologous ComS, and even primary sequence-unrelated, casein-derived octapeptides, were able to induce competence development in S. thermophilus. The lack of stringency of ComS sequence suggests that competence of a specific Streptococcus species may be modulated by other streptococci or by non-specific nutritive oligopeptides present in its environment.
Assuntos
Proteínas de Bactérias/metabolismo , Competência de Transformação por DNA , Regulação Bacteriana da Expressão Gênica , Streptococcus/genética , Sítios de Ligação , Biologia Computacional , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Feromônios/metabolismo , Ligação ProteicaRESUMO
In bacteria, phenotypic heterogeneity in an isogenic population compensates for the lack of genetic diversity and allows concomitant multiple survival strategies when choosing only one is too risky. This powerful tactic is exploited for competence development in streptococci where only a subset of the community triggers the pheromone signaling system ComR-ComS, resulting in a bimodal activation. However, the regulatory cascade and the underlying mechanisms of this puzzling behavior remained partially understood. Here, we show that CovRS, a well-described virulence regulatory system in pathogenic streptococci, directly controls the ComRS system to generate bimodality in the gut commensal Streptococcus salivarius and the closely related species Streptococcus thermophilus. Using single-cell analysis of fluorescent reporter strains together with regulatory mutants, we revealed that the intracellular concentration of ComR determines the proportion of competent cells in the population. We also showed that this bimodal activation requires a functional positive-feedback loop acting on ComS production, as well as its exportation and reinternalization via dedicated permeases. As the intracellular ComR concentration is critical in this process, we hypothesized that an environmental sensor could control its abundance. We systematically inactivated all two-component systems and identified CovRS as a direct repression system of comR expression. Notably, we showed that the system transduces its negative regulation through CovR binding to multiple sites in the comR promoter region. Since CovRS integrates environmental stimuli, we suggest that it is the missing piece of the puzzle that connects environmental conditions to (bimodal) competence activation in salivarius streptococci. IMPORTANCE Combining production of antibacterial compounds and uptake of DNA material released by dead cells, competence is one of the most efficient survival strategies in streptococci. Yet, this powerful tactic is energy consuming and reprograms the metabolism to such an extent that cell proliferation is transiently impaired. To circumvent this drawback, competence activation is restricted to a subpopulation, a process known as bimodality. In this work, we explored this phenomenon in salivarius streptococci and elucidated the molecular mechanisms governing cell fate. We also show that an environmental sensor controlling virulence in pathogenic streptococci is diverted to control competence in commensal streptococci. Together, those results showcase how bacteria can sense and transmit external stimuli to complex communication devices for fine-tuning collective behaviors.
Assuntos
Proteínas de Bactérias , Percepção de Quorum , Proteínas de Bactérias/metabolismo , Percepção de Quorum/fisiologia , Streptococcus/metabolismo , Transdução de Sinais/genética , Streptococcus thermophilus , Regulação Bacteriana da Expressão GênicaRESUMO
Situations of extremely low substrate availability, resulting in slow growth, are common in natural environments. To mimic these conditions, Lactobacillus plantarum was grown in a carbon-limited retentostat with complete biomass retention. The physiology of extremely slow-growing L. plantarum--as studied by genome-scale modeling and transcriptomics--was fundamentally different from that of stationary-phase cells. Stress resistance mechanisms were not massively induced during transition to extremely slow growth. The energy-generating metabolism was remarkably stable and remained largely based on the conversion of glucose to lactate. The combination of metabolic and transcriptomic analyses revealed behaviors involved in interactions with the environment, more particularly with plants: production of plant hormones or precursors thereof, and preparedness for the utilization of plant-derived substrates. Accordingly, the production of compounds interfering with plant root development was demonstrated in slow-growing L. plantarum. Thus, conditions of slow growth and limited substrate availability seem to trigger a plant environment-like response, even in the absence of plant-derived material, suggesting that this might constitute an intrinsic behavior in L. plantarum.
Assuntos
Fenômenos Fisiológicos Bacterianos , Lactobacillus plantarum/fisiologia , Aminoácidos/química , Biomassa , Carbono/química , Metabolismo Energético , Glucose/química , Hormônios/metabolismo , Ácidos Cetoglutáricos/química , Ácido Láctico/química , Lactobacillus plantarum/genética , Modelos Biológicos , Transcrição GênicaRESUMO
UNLABELLED: Hyperammonemia is a common complication of acute and chronic liver diseases. Often accompanied with side effects, therapeutic interventions such as antibiotics or lactulose are generally targeted to decrease the intestinal production and absorption of ammonia. In this study, we aimed to modulate hyperammonemia in three rodent models by administration of wild-type Lactobacillus plantarum, a genetically engineered ammonia hyperconsuming strain, and a strain deficient for the ammonia transporter. Wild-type and metabolically engineered L. plantarum strains were administered in ornithine transcarbamoylase-deficient Sparse-fur mice, a model of constitutive hyperammonemia, in a carbon tetrachloride rat model of chronic liver insufficiency and in a thioacetamide-induced acute liver failure mice model. Constitutive hyperammonemia in Sparse-fur mice and hyperammonemia in a rat model of chronic hepatic insufficiency were efficiently decreased by Lactobacillus administration. In a murine thioacetamide-induced model of acute liver failure, administration of probiotics significantly increased survival and decreased blood and fecal ammonia. The ammonia hyperconsuming strain exhibited a beneficial effect at a lower dose than its wild-type counterpart. Improved survival in the acute liver failure mice model was associated with lower blood ammonia levels but also with a decrease of astrocyte swelling in the brain cortex. Modulation of ammonia was abolished after administration of the strain deficient in the ammonium transporter. Intestinal pH was clearly lowered for all strains and no changes in gut flora were observed. CONCLUSION: Hyperammonemia in constitutive model or after acute or chronic induced liver failure can be controlled by the administration of L. plantarum with a significant effect on survival. The mechanism involved in this ammonia decrease implicates direct ammonia consumption in the gut.
Assuntos
Hiperamonemia/terapia , Lactobacillus plantarum/metabolismo , Probióticos/uso terapêutico , Doença Aguda , Alanina/metabolismo , Amônia/metabolismo , Animais , Tetracloreto de Carbono , Doença Crônica , Modelos Animais de Doenças , Hiperamonemia/etiologia , Hiperamonemia/metabolismo , Lactobacillus plantarum/genética , Lactulose/farmacologia , Falência Hepática/induzido quimicamente , Falência Hepática/complicações , Falência Hepática/dietoterapia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Probióticos/administração & dosagem , Ratos , Ratos Endogâmicos Lew , TioacetamidaRESUMO
Escherichia coli BLR(DE3) is a commercially available recA-deficient derivative of BL21(DE3), one of the most widely used strains for recombinant protein expression. Here, we present the full-genome sequence of BLR(DE3) and highlight additional differences with its parent strain BL21(DE3) which were previously unreported but may affect its physiology.
RESUMO
A high cell density fed-batch process was developed for production of recombinant CRM197, a non-toxic mutant of diphtheria toxin widely used as a carrier in polysaccharide-protein conjugate vaccines. Fully soluble recombinant CRM197 was obtained in high yields and with an authentic N-terminus, by targeting the protein to the periplasm of Escherichia coli using the Signal Recognition Particle (SRP)-dependent signal sequence of FlgI. Response Surface Methodology (RSM) was used to optimize the set-points of key process parameters (pH and feed rate at induction). Optimal production of periplasmic CRM197 was found at a slightly basic pH (7.5). The feed rate during induction was positively correlated with the accumulation of unprocessed cytoplasmic CRM197, consistent with limited capacity of the SRP secretion pathway. Decreasing the feed rate to align the protein synthesis rate with the secretion capacity, resulted in minimal production of cytoplasmic CRM197. Besides, the host background was found critical for production of periplasmic CRM197: B834(DE3) was the highest producer (>3 g/L), while BLR(DE3) produced one third less CRM197, and very low yields (290 mg/L) were obtained with HMS174(DE3). The optimized process is robust and linearly scalable, and represents a 20-fold yield improvement compared to a process based on Corynebacterium diphtheriae.
Assuntos
Proteínas de Bactérias/biossíntese , Escherichia coli/crescimento & desenvolvimento , Periplasma/metabolismo , Proteínas de Bactérias/metabolismo , Técnicas de Cultura Celular por Lotes , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentação , Concentração de Íons de Hidrogênio , Partícula de Reconhecimento de Sinal/metabolismoRESUMO
The uncontrolled presence of non-producer mutants negatively affects bioprocesses. In Bordetella pertussis cultures, avirulent mutants emerge spontaneously and accumulate. We characterized the dynamics of accumulation using high-throughput growth assays and competition experiments between virulent and avirulent (bvg(-) ) isolates. A fitness advantage of bvg(-) cells was identified as the main driver for bvg(-) accumulation under conditions of high virulence factor production. Conversely, under conditions that reduce their expression (antigenic modulation), bvg(-) takeover could be avoided. A control strategy was derived, which consists in applying modulating conditions whenever virulence factor production is not required. It has a wide range of applications, from routine laboratory operations to vaccine manufacturing, where pertussis toxin yields were increased 1.4-fold by performing early pre-culture steps in modulating conditions. Because it only requires subtle modifications of the culture medium and does not involve genetic modifications, this strategy is applicable to any B. pertussis isolate, and should facilitate regulatory acceptance of process changes for vaccine production. Strategies based on the same concept, could be derived for other industrially relevant micro-organisms. This study illustrates how a sound scientific understanding of physiological principles can be turned into a practical application for the bioprocess industry, in alignment with Quality by Design principles.
Assuntos
Modulação Antigênica/genética , Proteínas de Bactérias/metabolismo , Bordetella pertussis/metabolismo , Engenharia Metabólica/métodos , Mutação/genética , Fatores de Virulência de Bordetella/metabolismo , Proteínas de Bactérias/genética , Bordetella pertussis/genética , Modelos Biológicos , Niacina/metabolismo , Fatores de Virulência de Bordetella/análise , Fatores de Virulência de Bordetella/genéticaRESUMO
Heterogeneity or segregation of microbial populations has been the subject of much research, but the real impact of this phenomenon on bioprocesses remains poorly understood. The main reason for this lack of knowledge is the difficulty in monitoring microbial population heterogeneity under dynamic process conditions. The main concepts resulting in microbial population heterogeneity in the context of bioprocesses have been summarized by two distinct hypotheses. The first involves the individual history of microbial cells or the "path" followed during their residence time inside the process equipment. The second hypothesis involves a coordinated response by the microbial population as a bet-hedging strategy, in order to cope with process-related stresses. The respective contribution of each hypothesis to microbial heterogeneity in bioprocesses is still unclear. This illustrates the fact that, although microbial phenotypic heterogeneity has been thoroughly investigated at a fundamental level, the implications of this phenomenon in the context of microbial bioprocesses are still subject to debate. At this time, automated flow cytometry is the best technique for investigating microbial heterogeneity under process conditions. However, dedicated software and relevant biomarkers are needed for the proper integration of flow cytometry as a bioprocess control tool.
Assuntos
Bactérias/citologia , Citometria de Fluxo/instrumentação , Fungos/citologia , Análise de Célula Única/instrumentação , Biomarcadores , Técnicas Biossensoriais , Citometria de Fluxo/métodos , Fenótipo , Análise de Célula Única/métodos , Software , Estresse FisiológicoRESUMO
Racemases catalyse the inversion of stereochemistry in biological molecules, giving the organism the ability to use both isomers. Among them, lactate racemase remains unexplored due to its intrinsic instability and lack of molecular characterization. Here we determine the genetic basis of lactate racemization in Lactobacillus plantarum. We show that, unexpectedly, the racemase is a nickel-dependent enzyme with a novel α/ß fold. In addition, we decipher the process leading to an active enzyme, which involves the activation of the apo-enzyme by a single nickel-containing maturation protein that requires preactivation by two other accessory proteins. Genomic investigations reveal the wide distribution of the lactate racemase system among prokaryotes, showing the high significance of both lactate enantiomers in carbon metabolism. The even broader distribution of the nickel-based maturation system suggests a function beyond activation of the lactate racemase and possibly linked with other undiscovered nickel-dependent enzymes.
Assuntos
Ácido Láctico/metabolismo , Lactobacillus plantarum/enzimologia , Níquel , Racemases e Epimerases/metabolismo , Lactobacillus plantarum/genética , Dobramento de Proteína , Racemases e Epimerases/genética , EstereoisomerismoRESUMO
Lactobacillus plantarum produces peptidoglycan precursors ending in D-lactate instead of D-alanine, making the bacterium intrinsically resistant to vancomycin. The ligase Ddl of L. plantarum plays a central role in this specificity by synthesizing D-alanyl-D-lactate depsipeptides that are added to the precursor peptide chain by the enzyme MurF. Here we show that L. plantarum also encodes a D-Ala-D-Ala dipeptidase, Aad, which eliminates D-alanyl-D-alanine dipeptides that are produced by the Ddl ligase, thereby preventing their incorporation into the precursors. Although D-alanine-ended precursors can be incorporated into the cell wall, inactivation of Aad failed to suppress growth defects of L. plantarum mutants deficient in d-lactate-ended precursor synthesis.
Assuntos
Ácido Láctico/metabolismo , Lactobacillus plantarum/metabolismo , Peptidoglicano/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Transporte Biológico/efeitos dos fármacos , Dipeptidases/genética , Dipeptidases/metabolismo , Lactobacillus plantarum/enzimologia , Lactobacillus plantarum/genética , Microscopia de Fluorescência , Modelos Biológicos , Vancomicina/farmacologiaRESUMO
Sorbitol is a low-calorie sugar alcohol that is largely used as an ingredient in the food industry, based on its sweetness and its high solubility. Here, we investigated the capacity of Lactobacillus plantarum, a lactic acid bacterium found in many fermented food products and in the gastrointestinal tract of mammals, to produce sorbitol from fructose-6-phosphate by reverting the sorbitol catabolic pathway in a mutant strain deficient for both l- and d-lactate dehydrogenase activities. The two sorbitol-6-phosphate dehydrogenase (Stl6PDH) genes (srlD1 and srlD2) identified in the genome sequence were constitutively expressed at a high level in this mutant strain. Both Stl6PDH enzymes were shown to be active, and high specific activity could be detected in the overexpressing strains. Using resting cells under pH control with glucose as a substrate, both Stl6PDHs were capable of rerouting the glycolytic flux from fructose-6-phosphate toward sorbitol production with a remarkably high efficiency (61 to 65% glucose conversion), which is close to the maximal theoretical value of 67%. Mannitol production was also detected, albeit at a lower level than the control strain (9 to 13% glucose conversion), indicating competition for fructose-6-phosphate rerouting by natively expressed mannitol-1-phosphate dehydrogenase. By analogy, low levels of this enzyme were detected in both the wild-type and the lactate dehydrogenase-deficient strain backgrounds. After optimization, 25% of sugar conversion into sorbitol was achieved with cells grown under pH control. The role of intracellular NADH pools in the determination of the maximal sorbitol production is discussed.
Assuntos
Lactobacillus plantarum/metabolismo , Sorbitol/metabolismo , Desidrogenase do Álcool de Açúcar/genética , Desidrogenase do Álcool de Açúcar/metabolismo , Proteínas de Bactérias/genética , Carboidratos/análise , Fermentação , Frutosefosfatos/metabolismo , Expressão Gênica , Engenharia Genética , Glucose/metabolismo , Concentração de Íons de Hidrogênio , L-Lactato Desidrogenase/genética , Lactobacillus plantarum/enzimologia , Lactobacillus plantarum/genética , Espectroscopia de Ressonância Magnética , Manitol/metabolismo , Redes e Vias Metabólicas/genética , MutaçãoRESUMO
In addition to the previously characterized pyruvate oxidase PoxB, the Lactobacillus plantarum genome encodes four predicted pyruvate oxidases (PoxC, PoxD, PoxE, and PoxF). Each pyruvate oxidase gene was individually inactivated, and only the knockout of poxF resulted in a decrease in pyruvate oxidase activity under the tested conditions. We show here that L. plantarum has two major pyruvate oxidases: PoxB and PoxF. Both are involved in lactate-to-acetate conversion in the early stationary phase of aerobic growth and are regulated by carbon catabolite repression. A strain devoid of pyruvate oxidase activity was constructed by knocking out the poxB and poxF genes. In this mutant, acetate production was strongly affected, with lactate remaining the major end product of either glucose or maltose fermentation. Notably, survival during the stationary phase appeared to be dramatically improved in the poxB poxF double mutant.
Assuntos
Acetatos/metabolismo , Regulação Bacteriana da Expressão Gênica , Lactobacillus plantarum/crescimento & desenvolvimento , Piruvato Oxidase/metabolismo , Aerobiose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Biotecnologia/métodos , Lactobacillus plantarum/enzimologia , Lactobacillus plantarum/genética , Lactobacillus plantarum/metabolismo , Dados de Sequência Molecular , Mutação , Piruvato Oxidase/genéticaRESUMO
Lactobacillus plantarum is a lactic acid bacterium that produces d- and l-lactate using stereospecific NAD-dependent lactate dehydrogenases (LdhD and LdhL, respectively). However, reduction of glycolytic pyruvate by LdhD is not the only pathway for d-lactate production since a mutant defective in this activity still produces both lactate isomers (T. Ferain, J. N. Hobbs, Jr., J. Richardson, N. Bernard, D. Garmyn, P. Hols, N. E. Allen, and J. Delcour, J. Bacteriol. 178:5431-5437, 1996). Production of d-lactate in this species has been shown to be connected to cell wall biosynthesis through its incorporation as the last residue of the muramoyl-pentadepsipeptide peptidoglycan precursor. This particular feature leads to natural resistance to high concentrations of vancomycin. In the present study, we show that L. plantarum possesses two pathways for d-lactate production: the LdhD enzyme and a lactate racemase, whose expression requires l-lactate. We report the cloning of a six-gene operon, which is involved in lactate racemization activity and is positively regulated by l-lactate. Deletion of this operon in an L. plantarum strain that is devoid of LdhD activity leads to the exclusive production of l-lactate. As a consequence, peptidoglycan biosynthesis is affected, and growth of this mutant is d-lactate dependent. We also show that the growth defect can be partially restored by expression of the d-alanyl-d-alanine-forming Ddl ligase from Lactococcus lactis, or by supplementation with various d-2-hydroxy acids but not d-2-amino acids, leading to variable vancomycin resistance levels. This suggests that L. plantarum is unable to efficiently synthesize peptidoglycan precursors ending in d-alanine and that the cell wall biosynthesis machinery in this species is specifically dedicated to the production of peptidoglycan precursors ending in d-lactate. In this context, the lactate racemase could thus provide the bacterium with a rescue pathway for d-lactate production upon inactivation or inhibition of the LdhD enzyme.
Assuntos
Lactatos/metabolismo , Lactobacillus plantarum/enzimologia , Racemases e Epimerases/metabolismo , Aminoácidos/metabolismo , Parede Celular/metabolismo , Clonagem Molecular , Hidroxiácidos/metabolismo , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Lactato Desidrogenases/metabolismo , Lactatos/química , Lactobacillus plantarum/genética , Mutação , Óperon/fisiologia , Peptídeo Sintases/metabolismo , Peptidoglicano/biossíntese , Peptidoglicano/metabolismo , Racemases e Epimerases/biossínteseRESUMO
NAD-independent lactate dehydrogenases are commonly thought to be responsible for lactate utilization during the stationary phase of aerobic growth in Lactobacillus plantarum. To substantiate this view, we constructed single and double knockout mutants for the corresponding genes, loxD and loxL. Lactate-to-acetate conversion was not impaired in these strains, while it was completely blocked in mutants deficient in NAD-dependent lactate dehydrogenase activities, encoded by the ldhD and ldhL genes. We conclude that NAD-dependent but not NAD-independent lactate dehydrogenases are involved in this process.
Assuntos
L-Lactato Desidrogenase/fisiologia , Ácido Láctico/metabolismo , Lactobacillus/metabolismo , NAD/fisiologia , Acetatos/metabolismo , Aerobiose , Sequência de Bases , Genes Bacterianos/fisiologia , Dados de Sequência MolecularRESUMO
The pyruvate oxidase gene (poxB) from Lactobacillus plantarum Lp80 was cloned and characterized. Northern blot and primer extension analyses revealed that transcription of poxB is monocistronic and under the control of a vegetative promoter. poxB mRNA expression was strongly induced by aeration and was repressed by glucose. Moreover, Northern blotting performed at different stages of growth showed that poxB expression is maximal in the early stationary phase when glucose is exhausted. Primer extension and in vivo footprint analyses revealed that glucose repression of poxB is mediated by CcpA binding to the cre site identified in the promoter region. The functional role of the PoxB enzyme was studied by using gene overexpression and knockout in order to evaluate its implications for acetate production. Constitutive overproduction of PoxB in L. plantarum revealed the predominant role of pyruvate oxidase in the control of acetate production under aerobic conditions. The DeltapoxB mutant strain exhibited a moderate (20 to 25%) decrease in acetate production when it was grown on glucose as the carbon source, and residual pyruvate oxidase activity that was between 20 and 85% of the wild-type activity was observed with glucose limitation (0.2% glucose). In contrast, when the organism was grown on maltose, the poxB mutation resulted in a large (60 to 80%) decrease in acetate production. In agreement with the latter observation, the level of residual pyruvate oxidase activity with maltose limitation (0.2% maltose) was less than 10% of the wild-type level of activity.