Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Saudi J Biol Sci ; 28(11): 6069-6076, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34764740

RESUMO

Potential probiotic bacteria can be used as a biotherapeutic agent and a sustainable alternative to antibiotics, as an anti-oxidative, anti-inflammatory, and anti-diabetic agent without causing any serious side effects. Mostly human-friendly Lactic acid bacteria (LAB) have been isolated from the animal-human origin to be used as biotherapeutic agents or to produce useful metabolites (nutraceutical). However, less information is known about the role of medicinal plants associated LAB as biotherapeutic agents. The isolation of 115 human-friendly Lactobacillus strains was done from the rhizosphere of the medicinal plants Ocimum tenuiflorum, Azadirachta indica, Ficus carica. The obtained bacteria were then tested for their safe status before being using it for a beneficial purpose. Out of 115 strains, 29 (25%) were negative for blood hemolytic activities. Among these 29 isolates, three isolates did not show a breakdown of gelatin and were recognized as safe. Antibiotic resistance assay showed resistance of two of them against antibiotics discs of Streptomycin (10 µg), Ciprofloxacin (20 µg), Vancomycin (30 µg), Metronidazole (10 µg), Ampicillin (5 µg), Chloramphenicol (30 µg), Kanamycin (30 µg), Erythromycin (15 µg), Penicillin (10 µg) and Tetracycline (30 µg). The bacterial isolate (T-2) was found safe that was identified as Lactobacillus agilis by sequence analysis of 16 s rRNA gene and processed in vitro as an anti-bacterial, anti-oxidant, anti-diabetic, and anti-inflammatory agent. Free radical scavenging activities and inhibition of α-amylase activities for Lactobacillus agilis were found relative to standard drug values as 68% and 73% and 51.3% and 65.3%, respectively. The in-vitro anti-inflammatory assay showed 61.6% (Lactobacillus agilis) while showed 69% (aspirin) activity for denaturation albumin protein. The results suggested that Lactobacillus agilis can be used as a potential probiotic strain as well as can be used to produce nutraceuticals.

2.
Sci Rep ; 10(1): 8523, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32444854

RESUMO

The free convective unsteady fluctuating, MHD flow of electrically conducting viscoelastic dusty fluid in a channel-driven with the impact of oscillating pressure gradient and the motion of the upper plate has been studied in this article. The noteworthy heat generation/absorption has also taken into account, the heat generation established the mechanism of heat transfer by both the momentum of fluid and the motion of dust particle and absorption of heat by the dust particle is because of conduction. The coupled governing partial differential equations are reduced to the ordinary differential equation through the assumed periodic solutions. Analytical solutions for the velocity of the fluid as well as the velocity of dust particles and for energy equation of the fluid and for dust particles are obtained by using Poincare-Light Hill Perturbation Technique. The influence of various parameters of interest is discussed on the velocity and temperature profiles of the fluid and particles. The evolution of fluid-phase and dusty-phase with dual behavior of the magnetic parameter for both boundary layer and free stream velocities has been discussed. The boundary layer velocity decreased with an increase in magnetic parameter, while at the free stream flow, the result is quite opposite. The above result of magnetic field is worthwhile and can be used to control the boundary layer thickness. The current work also concludes that by increasing the Peclet number and concentration of the dust particles retards the boundary layer velocity. Furthermore, various physical parameters like coefficient of heat absorption, concentration of the dust particles, peclet number, magnetic parameter, and temperature relaxation time parameter retard the motion of dusty-phase, while Grashof number enhances the flow of dusty-phase. Other properties of fluid, which have great importance for engineers are, the rate of heat transfer and skin friction. It is shown in Table 1 that by increasing the value of Peclet number from 1 to 2 it increases the rate of heat transfer from 1.3263 to 1.3387. Furthermore, Table 2 shows that by increasing the concentration parameter from 2 to 4 the skin friction increases from 2.3872 to 4.7799.

3.
Sci Rep ; 8(1): 15285, 2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-30327550

RESUMO

In the modern era, diathermic oils have been gotten the great attention from researchers due to its notable and momentous applications in engineering, mechanics and in the industrial field. The aim of this paper is to model the problem to augment the heat transfer rate of diathermic oils, specifically, Engine-oil (EO) and Kerosene-oil (KO) are taken. The present work is dedicated to examine the shape impacts of molybdenum-disulfide (MoS2) nanoparticles in the free convection magnetohydrodynamic (MHD) flow of Brinkman-type nanofluid in a rotating frame. The problem is modeled in terms of partial differential equations with oscillatory boundary conditions. The integer-order model is transformed to fractional-order model in time (Caputo-Fabrizio). The exact solutions are obtained using the Laplace transform technique. Figures are drawn to compare the different non-spherically shaped molybdenum-disulfide nanoparticles on secondary and primary velocities. The Nusselt number is computed in the tabular form and discussed in detail. It is worth noting that platelet and blade shape of MoS2 nanoparticle has more tendency to improve the heat transfer rate of both fluids as compared to nanoparticles with brick and cylinder shapes. It is also shown that the rate of heat transfer enhances 13.51% by adding MoS2 in engine oil which improved its lubrication properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA