Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Ecol Lett ; 27(6): e14450, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38857323

RESUMO

Fire and herbivory interact to alter ecosystems and carbon cycling. In savannas, herbivores can reduce fire activity by removing grass biomass, but the size of these effects and what regulates them remain uncertain. To examine grazing effects on fuels and fire regimes across African savannas, we combined data from herbivore exclosure experiments with remotely sensed data on fire activity and herbivore density. We show that, broadly across African savannas, grazing herbivores substantially reduce both herbaceous biomass and fire activity. The size of these effects was strongly associated with grazing herbivore densities, and surprisingly, was mostly consistent across different environments. A one-zebra increase in herbivore biomass density (~100 kg/km2 of metabolic biomass) resulted in a ~53 kg/ha reduction in standing herbaceous biomass and a ~0.43 percentage point reduction in burned area. Our results indicate that fire models can be improved by incorporating grazing effects on grass biomass.


Assuntos
Biomassa , Incêndios , Pradaria , Herbivoria , Animais , Poaceae/fisiologia , África
2.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34580170

RESUMO

African savannas are the last stronghold of diverse large-mammal communities, and a major focus of savanna ecology is to understand how these animals affect the relative abundance of trees and grasses. However, savannas support diverse plant life-forms, and human-induced changes in large-herbivore assemblages-declining wildlife populations and their displacement by livestock-may cause unexpected shifts in plant community composition. We investigated how herbivory affects the prevalence of lianas (woody vines) and their impact on trees in an East African savanna. Although scarce (<2% of tree canopy area) and defended by toxic latex, the dominant liana, Cynanchum viminale (Apocynaceae), was eaten by 15 wild large-herbivore species and was consumed in bulk by native browsers during experimental cafeteria trials. In contrast, domesticated ungulates rarely ate lianas. When we experimentally excluded all large herbivores for periods of 8 to 17 y (simulating extirpation), liana abundance increased dramatically, with up to 75% of trees infested. Piecewise exclusion of different-sized herbivores revealed functional complementarity among size classes in suppressing lianas. Liana infestation reduced tree growth and reproduction, but herbivores quickly cleared lianas from trees after the removal of 18-y-old exclosure fences (simulating rewilding). A simple model of liana contagion showed that, without herbivores, the long-term equilibrium could be either endemic (liana-tree coexistence) or an all-liana alternative stable state. We conclude that ongoing declines of wild large-herbivore populations will disrupt the structure and functioning of many African savannas in ways that have received little attention and that may not be mitigated by replacing wildlife with livestock.


Assuntos
Cynanchum/crescimento & desenvolvimento , Ecossistema , Preferências Alimentares , Herbivoria/fisiologia , Árvores/crescimento & desenvolvimento , África , Animais , Animais Selvagens , Elefantes , Recuperação e Remediação Ambiental , Girafas , Humanos , Gado
3.
Mol Ecol ; 32(9): 2320-2334, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36740909

RESUMO

Differences in the bacterial communities inhabiting mammalian gut microbiomes tend to reflect the phylogenetic relatedness of their hosts, a pattern dubbed phylosymbiosis. Although most research on this pattern has compared the gut microbiomes of host species across biomes, understanding the evolutionary and ecological processes that generate phylosymbiosis requires comparisons across phylogenetic scales and under similar ecological conditions. We analysed the gut microbiomes of 14 sympatric small mammal species in a semi-arid African savanna, hypothesizing that there would be a strong phylosymbiotic pattern associated with differences in their body sizes and diets. Consistent with phylosymbiosis, microbiome dissimilarity increased with phylogenetic distance among hosts, ranging from congeneric sets of mice and hares that did not differ significantly in microbiome composition to species from different taxonomic orders that had almost no gut bacteria in common. While phylosymbiosis was detected among just the 11 species of rodents, it was substantially weaker at this scale than in comparisons involving all 14 species together. In contrast, microbiome diversity and composition were generally more strongly correlated with body size, dietary breadth, and dietary overlap in comparisons restricted to rodents than in those including all lineages. The starkest divides in microbiome composition thus reflected the broad evolutionary divergence of hosts, regardless of body size or diet, while subtler microbiome differences reflected variation in ecologically important traits of closely related hosts. Strong phylosymbiotic patterns arose deep in the phylogeny, and ecological filters that promote functional differentiation of cooccurring host species may disrupt or obscure this pattern near the tips.


Assuntos
Microbioma Gastrointestinal , Lagomorpha , Microbiota , Animais , Filogenia , Microbioma Gastrointestinal/genética , Mamíferos/genética , Evolução Biológica , Microbiota/genética , Roedores , Bactérias , RNA Ribossômico 16S/genética
4.
Glob Ecol Biogeogr ; 31(8): 1526-1541, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36247232

RESUMO

Aim: Macroecological studies that require habitat suitability data for many species often derive this information from expert opinion. However, expert-based information is inherently subjective and thus prone to errors. The increasing availability of GPS tracking data offers opportunities to evaluate and supplement expert-based information with detailed empirical evidence. Here, we compared expert-based habitat suitability information from the International Union for Conservation of Nature (IUCN) with habitat suitability information derived from GPS-tracking data of 1,498 individuals from 49 mammal species. Location: Worldwide. Time period: 1998-2021. Major taxa studied: Forty-nine terrestrial mammal species. Methods: Using GPS data, we estimated two measures of habitat suitability for each individual animal: proportional habitat use (proportion of GPS locations within a habitat type), and selection ratio (habitat use relative to its availability). For each individual we then evaluated whether the GPS-based habitat suitability measures were in agreement with the IUCN data. To that end, we calculated the probability that the ranking of empirical habitat suitability measures was in agreement with IUCN's classification into suitable, marginal and unsuitable habitat types. Results: IUCN habitat suitability data were in accordance with the GPS data (> 95% probability of agreement) for 33 out of 49 species based on proportional habitat use estimates and for 25 out of 49 species based on selection ratios. In addition, 37 and 34 species had a > 50% probability of agreement based on proportional habitat use and selection ratios, respectively. Main conclusions: We show how GPS-tracking data can be used to evaluate IUCN habitat suitability data. Our findings indicate that for the majority of species included in this study, it is appropriate to use IUCN habitat suitability data in macroecological studies. Furthermore, we show that GPS-tracking data can be used to identify and prioritize species and habitat types for re-evaluation of IUCN habitat suitability data.

5.
Ecol Lett ; 24(5): 1052-1062, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33745197

RESUMO

Invasive ants shape assemblages and interactions of native species, but their effect on fundamental ecological processes is poorly understood. In East Africa, Pheidole megacephala ants have invaded monodominant stands of the ant-tree Acacia drepanolobium, extirpating native ant defenders and rendering trees vulnerable to canopy damage by vertebrate herbivores. We used experiments and observations to quantify direct and interactive effects of invasive ants and large herbivores on A. drepanolobium photosynthesis over a 2-year period. Trees that had been invaded for ≥ 5 years exhibited 69% lower whole-tree photosynthesis during key growing seasons, resulting from interaction between invasive ants and vertebrate herbivores that caused leaf- and canopy-level photosynthesis declines. We also surveyed trees shortly before and after invasion, finding that recent invasion induced only minor changes in leaf physiology. Our results from individual trees likely scale up, highlighting the potential of invasive species to alter ecosystem-level carbon fixation and other biogeochemical cycles.


Assuntos
Acacia , Formigas , Animais , Ciclo do Carbono , Ecossistema , Simbiose
6.
Ecol Lett ; 24(10): 2178-2191, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34311513

RESUMO

The forage maturation hypothesis (FMH) states that energy intake for ungulates is maximised when forage biomass is at intermediate levels. Nevertheless, metabolic allometry and different digestive systems suggest that resource selection should vary across ungulate species. By combining GPS relocations with remotely sensed data on forage characteristics and surface water, we quantified the effect of body size and digestive system in determining movements of 30 populations of hindgut fermenters (equids) and ruminants across biomes. Selection for intermediate forage biomass was negatively related to body size, regardless of digestive system. Selection for proximity to surface water was stronger for equids relative to ruminants, regardless of body size. To be more generalisable, we suggest that the FMH explicitly incorporate contingencies in body size and digestive system, with small-bodied ruminants selecting more strongly for potential energy intake, and hindgut fermenters selecting more strongly for surface water.


Assuntos
Sistema Digestório , Ruminantes , Animais , Tamanho Corporal
7.
Ecol Appl ; 31(4): e02299, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33428817

RESUMO

For ungulates and other long-lived species, life-history theory predicts that nutritional reserves are allocated to reproduction in a state-dependent manner because survival is highly conserved. Further, as per capita food abundance and nutritional reserves decline (i.e., density dependence intensifies), reproduction and recruitment become increasingly sensitive to weather. Thus, the degree to which weather influences vital rates should be associated with proximity to nutritional carrying capacity-a notion that we refer to as the Nutritional Buffer Hypothesis. We tested the Nutritional Buffer Hypothesis using six moose (Alces alces) populations that varied in calf recruitment (33-69 calves/100 cows). We predicted that populations with high calf recruitment were nutritionally buffered against the effects of unfavorable weather, and thus were below nutritional carrying capacity. We applied a suite of tools to quantify habitat and nutritional condition of each population and found that increased browse condition, forage quality, and body fat were associated with increased pregnancy and calf recruitment, thereby providing multiple lines of evidence that declines in calf recruitment were underpinned by resource limitation. From 2001 to 2015, recruitment was more sensitive to interannual variation in weather (e.g., winter severity, drought) and plant phenology (e.g., duration of spring) for populations with reduced browse condition, forage quality, and body fat, suggesting these populations lacked the nutritional reserves necessary to buffer demographic performance against the effects of unfavorable weather. Further, average within-population calf recruitment was determined by regional climatic variation, suggesting that the pattern of reduced recruitment near the southern range boundary of moose stems from an interaction between climate and resource limitation. When coupled with information on habitat, nutrition, weather, and climate, life-history theory provides a framework to estimate nutritional limitation, proximity to nutritional carrying capacity, and impacts of climate change for ungulates.


Assuntos
Cervos , Animais , Bovinos , Ecossistema , Feminino , Plantas , Gravidez , Estações do Ano , Tempo (Meteorologia)
8.
J Anim Ecol ; 90(11): 2510-2522, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34192343

RESUMO

The extinction of 80% of megaherbivore (>1,000 kg) species towards the end of the Pleistocene altered vegetation structure, fire dynamics and nutrient cycling world-wide. Ecologists have proposed (re)introducing megaherbivores or their ecological analogues to restore lost ecosystem functions and reinforce extant but declining megaherbivore populations. However, the effects of megaherbivores on smaller herbivores are poorly understood. We used long-term exclusion experiments and multispecies hierarchical models fitted to dung counts to test (a) the effect of megaherbivores (elephant and giraffe) on the occurrence (dung presence) and use intensity (dung pile density) of mesoherbivores (2-1,000 kg), and (b) the extent to which the responses of each mesoherbivore species was predictable based on their traits (diet and shoulder height) and phylogenetic relatedness. Megaherbivores increased the predicted occurrence and use intensity of zebras but reduced the occurrence and use intensity of several other mesoherbivore species. The negative effect of megaherbivores on mesoherbivore occurrence was stronger for shorter species, regardless of diet or relatedness. Megaherbivores substantially reduced the expected total use intensity (i.e. cumulative dung density of all species) of mesoherbivores, but only minimally reduced the expected species richness (i.e. cumulative predicted occurrence probabilities of all species) of mesoherbivores (by <1 species). Simulated extirpation of megaherbivores altered use intensity by mesoherbivores, which should be considered during (re)introductions of megaherbivores or their ecological proxies. Species' traits (in this case shoulder height) may be more reliable predictors of mesoherbivores' responses to megaherbivores than phylogenetic relatedness, and may be useful for predicting responses of data-limited species.


Assuntos
Elefantes , Girafas , Animais , Ecossistema , Herbivoria , Filogenia
9.
Oecologia ; 195(3): 667-676, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33506295

RESUMO

Supercolonial ants are among the largest cooperative units in nature, attaining extremely high densities. How these densities feed back into their population growth rates and how abundance and extrinsic factors interact to affect their population dynamics remain open questions. We studied how local worker abundance and extrinsic factors (rain, tree density) affect population growth rate and spread in the invasive big-headed ant, which is disrupting a keystone mutualism between acacia trees and native ants in parts of East Africa. We measured temporal changes in big-headed ant (BHA) abundance and rates of spread over 20 months along eight transects, extending from areas behind the front with high BHA abundances to areas at the invasion front with low BHA abundances. We used models that account for negative density dependence and incorporated extrinsic factors to determine what variables best explain variation in local population growth rates. Population growth rates declined with abundance, however, the strength of density dependence decreased with abundance. We suggest that weaker density dependence at higher ant abundances may be due to the beneficial effect of cooperative behavior that partially counteracts resource limitation. Rainfall and tree density had minor effects on ant population dynamics. BHA spread near 50 m/year, more than previous studies reported and comparable to rates of spread of other supercolonial ants. Although we did not detect declines in abundance in areas invaded a long time ago (> 10 years), continued monitoring of abundance at invaded sites may help to better understand the widespread collapse of many invasive ants.


Assuntos
Acacia , Formigas , Animais , Pradaria , Dinâmica Populacional , Simbiose
10.
Proc Natl Acad Sci U S A ; 115(3): 543-548, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29284748

RESUMO

Predicting how species' abundances and ranges will shift in response to climate change requires a mechanistic understanding of how multiple factors interact to limit population growth. Both abiotic stress and species interactions can limit populations and potentially set range boundaries, but we have a poor understanding of when and where each is most critical. A commonly cited hypothesis, first proposed by Darwin, posits that abiotic factors (e.g., temperature, precipitation) are stronger determinants of range boundaries in apparently abiotically stressful areas ("stress" indicates abiotic factors that reduce population growth), including desert, polar, or high-elevation environments, whereas species interactions (e.g., herbivory, competition) play a stronger role in apparently less stressful environments. We tested a core tenet of this hypothesis-that population growth rate is more strongly affected by species interactions in less stressful areas-using experimental manipulations of species interactions affecting a common herbaceous plant, Hibiscus meyeri (Malvaceae), across an aridity gradient in a semiarid African savanna. Population growth was more strongly affected by four distinct species interactions (competition with herbaceous and shrubby neighbors, herbivory, and pollination) in less stressful mesic areas than in more stressful arid sites. However, contrary to common assumptions, this effect did not arise because of greater density or diversity of interacting species in less stressful areas, but rather because aridity reduced sensitivity of population growth to these interactions. Our work supports classic predictions about the relative strength of factors regulating population growth across stress gradients, but suggests that this pattern results from a previously unappreciated mechanism that may apply to many species worldwide.


Assuntos
Ecossistema , Hibiscus/crescimento & desenvolvimento , África , Animais , Mudança Climática , Clima Desértico , Herbivoria/fisiologia , Hibiscus/química , Hibiscus/fisiologia , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA