Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Arch Toxicol ; 96(11): 3013-3032, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35963937

RESUMO

Styrene oligomers (SO) are well-known side products formed during styrene polymerization. They consist mainly of dimers (SD) and trimers (ST) that have been shown to be still residual in polystyrene (PS) materials. In this study migration of SO from PS into sunflower oil at temperatures between 5 and 70 °C and contact times between 0.5 h and 10 days was investigated. In addition, the contents of SD and ST in the fatty foodstuffs créme fraiche and coffee cream, which are typically enwrapped in PS, were measured and the amounts detected (of up to 0.123 mg/kg food) were compared to literature data. From this comparison, it became evident, that the levels of SO migrating from PS packaging into real food call for a comprehensive risk assessment. As a first step towards this direction, possible genotoxicity has to be addressed. Due to technical and experimental limitations, however, the few existing in vitro tests available are unsuited to provide a clear picture. In order to reduce uncertainty of these in vitro tests, four different knowledge and statistics-based in silico tools were applied to such SO that are known to migrate into food. Except for SD4 all evaluated SD and ST showed no alert for genotoxicity. For SD4, either the predictions were inconclusive or the substance was assigned as being out of the chemical space (out of domain) of the respective in silico tool. Therefore, the absence of genotoxicity of SD4 requires additional experimental proof. Apart from SD4, in silico studies supported the limited in vitro data that indicated the absence of genotoxicity of SO. In conclusion, the overall migration of all SO together into food of up to 50 µg/kg does not raise any health concerns, given the currently available in silico and in vitro data.


Assuntos
Contaminação de Alimentos , Poliestirenos , Café , Contaminação de Alimentos/análise , Embalagem de Alimentos , Poliestirenos/química , Poliestirenos/toxicidade , Óleo de Girassol
2.
EFSA J ; 21(9): e08215, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37711880

RESUMO

Mineral oil hydrocarbons (MOH) are composed of saturated hydrocarbons (MOSH) and aromatic hydrocarbons (MOAH). Due to the complexity of the MOH composition, their complete chemical characterisation is not possible. MOSH accumulation is observed in various tissues, with species-specific differences. Formation of liver epithelioid lipogranulomas and inflammation, as well as increased liver and spleen weights, are observed in Fischer 344 (F344) rats, but not in Sprague-Dawley (SD) rats. These effects are related to specific accumulation of wax components in the liver of F344 rats, which is not observed in SD rats or humans. The CONTAM Panel concluded that F344 rats are not an appropriate model for effects of MOSH with wax components. A NOAEL of 236 mg/kg body weight (bw) per day, corresponding to the highest tested dose in F344 rats of a white mineral oil product virtually free of wax components, was selected as relevant reference point (RP). The highest dietary exposure to MOSH was estimated for the young population, with lower bound-upper bound (LB-UB) means and 95th percentiles of 0.085-0.126 and 0.157-0.212 mg/kg bw per day, respectively. Considering a margin of exposure approach, the Panel concluded that the present dietary exposure to MOSH does not raise concern for human health for all age classes. Genotoxicity and carcinogenicity are associated with MOAH with three or more aromatic rings. For this subfraction, a surrogate RP of 0.49 mg/kg bw per day, calculated from data on eight polycyclic aromatic hydrocarbons, was considered. The highest dietary exposure to MOAH was also in the young population, with LB-UB mean and 95th percentile estimations of 0.003-0.031 and 0.011-0.059 mg/kg bw per day, respectively. Based on two scenarios on three or more ring MOAH contents in the diet and lacking toxicological information on effects of 1 and 2 ring MOAH, a possible concern for human health was raised.

3.
Water Res ; 129: 154-162, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29145085

RESUMO

Microplastics are anthropogenic contaminants which have been found in oceans, lakes and rivers. Investigations focusing on drinking water are rare and studies have mainly been using micro-Fourier Transform Infrared Spectroscopy (µ-FT-IR). A major limitation of this technique is its inability to detect particles smaller than 20 µm. However, micro-Raman spectroscopy is capable of detecting even smaller particle sizes. Therefore, we show that this technique, which was used in this study, is particularly useful in detecting microplastics in drinking water where particle sizes are in the low micrometer range. In our study, we compared the results from drinking water distributed in plastic bottles, glass bottles and beverage cartons. We tested the microplastic content of water from 22 different returnable and single-use plastic bottles, 3 beverage cartons and 9 glass bottles obtained from grocery stores in Germany. Small (-50-500 µm) and very small (1-50 µm) microplastic fragments were found in every type of water. Interestingly, almost 80% of all microplastic particles found had a particle size between 5 and 20 µm and were therefore not detectable by the analytical techniques used in previous studies. The average microplastics content was 118 ± 88 particles/l in returnable, but only 14 ± 14 particles/l in single-use plastic bottles. The microplastics content in the beverage cartons was only 11 ± 8 particles/l. Contrary to our assumptions we found high amounts of plastic particles in some of the glass bottled waters (range 0-253 particles/l, mean 50 ± 52 particles/l). A statistically significant difference from the blank value (14 ± 13) to the investigated packaging types could only be shown comparing to the returnable bottles (p < 0.05). Most of the particles in water from returnable plastic bottles were identified as consisting of polyester (primary polyethylene terephthalate PET, 84%) and polypropylene (PP; 7%). This is not surprising since the bottles are made of PET and the caps are made of PP. In water from single-use plastic bottles only a few micro-PET-particles have been found. In the water from beverage cartons and also from glass bottles, microplastic particles other than PET were found, for example polyethylene or polyolefins. This can be explained by the fact that beverage cartons are coated with polyethylene foils and caps are treated with lubricants. Therefore, these findings indicate that the packaging itself may release microparticles. The main fraction of the microplastic particles identified are of very small size with dimensions less than 20 µm, which is not detectable with the µ-FT-IR technique used in previous studies.


Assuntos
Água Potável/análise , Águas Minerais/análise , Plásticos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Alemanha , Oceanos e Mares , Polietileno/análise , Polipropilenos/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA