Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Microb Cell Fact ; 22(1): 41, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849884

RESUMO

BACKGROUND: Pediocin PA-1 is a bacteriocin of recognized value with applications in food bio-preservation and the medical sector for the prevention of infection. To date, industrial manufacturing of pediocin PA-1 is limited by high cost and low-performance. The recent establishment of the biotechnological workhorse Corynebacterium glutamicum as recombinant host for pediocin PA-1 synthesis displays a promising starting point towards more efficient production. RESULTS: Here, we optimized the fermentative production process. Following successful simplification of the production medium, we carefully investigated the impact of dissolved oxygen, pH value, and the presence of bivalent calcium ions on pediocin production. It turned out that the formation of the peptide was strongly supported by an acidic pH of 5.7 and microaerobic conditions at a dissolved oxygen level of 2.5%. Furthermore, elevated levels of CaCl2 boosted production. The IPTG-inducible producer C. glutamicum CR099 pXMJ19 Ptac pedACDCg provided 66 mg L-1 of pediocin PA-1 in a two-phase batch process using the optimized set-up. In addition, the novel constitutive strain Ptuf pedACDCg allowed successful production without the need for IPTG. CONCLUSIONS: The achieved pediocin titer surpasses previous efforts in various microbes up to almost seven-fold, providing a valuable step to further explore and develop this important bacteriocin. In addition to its high biosynthetic performance C. glutamicum proved to be highly robust under the demanding producing conditions, suggesting its further use as host for bacteriocin production.


Assuntos
Bacteriocinas , Corynebacterium glutamicum , Pediocinas , Peptídeos Antimicrobianos , Cálcio , Corynebacterium glutamicum/genética , Isopropiltiogalactosídeo , Bacteriocinas/genética , Íons , Concentração de Íons de Hidrogênio
2.
Biotechnol Bioeng ; 119(2): 575-590, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34821377

RESUMO

Model-based state estimators enable online monitoring of bioprocesses and, thereby, quantitative process understanding during running operations. During prolonged continuous bioprocesses strain physiology is affected by selection pressure. This can cause time-variable metabolic capacities that lead to a considerable model-plant mismatch reducing monitoring performance if model parameters are not adapted accordingly. Variability of metabolic capacities therefore needs to be integrated in the in silico representation of a process using model-based monitoring approaches. To enable online monitoring of multiple concentrations as well as metabolic capacities during continuous bioprocessing of spent sulfite liquor with Corynebacterium glutamicum, this study presents a particle filtering framework that takes account of parametric variability. Physiological parameters are continuously adapted by Bayesian inference, using noninvasive off-gas measurements. Additional information on current parameter importance is derived from time-resolved sensitivity analysis. Experimental results show that the presented framework enables accurate online monitoring of long-term culture dynamics, whereas state estimation without parameter adaption failed to quantify substrate metabolization and growth capacities under conditions of high selection pressure. Online estimated metabolic capacities are further deployed for multiobjective optimization to identify time-variable optimal operating points. Thereby, the presented monitoring system forms a basis for adaptive control during continuous bioprocessing of lignocellulosic by-product streams.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Corynebacterium glutamicum , Açúcares/metabolismo , Técnicas de Cultura Celular por Lotes/instrumentação , Teorema de Bayes , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Desenho de Equipamento , Modelos Biológicos , Dinâmica não Linear
3.
Microb Cell Fact ; 21(1): 11, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35033086

RESUMO

BACKGROUND: The bacteriocin nisin is naturally produced by Lactococcus lactis as an inactive prepeptide that is modified posttranslationally resulting in five (methyl-)lanthionine rings characteristic for class Ia bacteriocins. Export and proteolytic cleavage of the leader peptide results in release of active nisin. By targeting the universal peptidoglycan precursor lipid II, nisin has a broad target spectrum including important human pathogens such as Listeria monocytogenes and methicillin-resistant Staphylococcus aureus strains. Industrial nisin production is currently performed using natural producer strains resulting in rather low product purity and limiting its application to preservation of dairy food products. RESULTS: We established heterologous nisin production using the biotechnological workhorse organism Corynebacterium glutamicum in a two-step process. We demonstrate successful biosynthesis and export of fully modified prenisin and its activation to mature nisin by a purified, soluble variant of the nisin protease NisP (sNisP) produced in Escherichia coli. Active nisin was detected by a L. lactis sensor strain with strictly nisin-dependent expression of the fluorescent protein mCherry. Following activation by sNisP, supernatants of the recombinant C. glutamicum producer strain cultivated in standard batch fermentations contained at least 1.25 mg/l active nisin. CONCLUSIONS: We demonstrate successful implementation of a two-step process for recombinant production of active nisin with C. glutamicum. This extends the spectrum of bioactive compounds that may be produced using C. glutamicum to a bacteriocin harboring complex posttranslational modifications. Our results provide a basis for further studies to optimize product yields, transfer production to sustainable substrates and purification of pharmaceutical grade nisin.


Assuntos
Corynebacterium glutamicum/metabolismo , Nisina/biossíntese , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/crescimento & desenvolvimento , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentação , Nisina/química , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Precursores de Proteínas/biossíntese , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/metabolismo , Tripsina/metabolismo
4.
Microb Cell Fact ; 21(1): 236, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36368990

RESUMO

Bacteriocins are ribosomally synthesized antimicrobial peptides, that either kill target bacteria or inhibit their growth. Bacteriocins are used in food preservation and are of increasing interest as potential alternatives to conventional antibiotics. In the present study, we show that Lactococcus petauri B1726, a strain isolated from fermented balsam pear, produces a heat-stable and protease-sensitive compound. Following genome sequencing, a gene cluster for production of a class IId bacteriocin was identified consisting of garQ (encoding for the bacteriocin garvicin Q), garI (for a putative immunity protein), garC, and garD (putative transporter proteins). Growth conditions were optimized for increased bacteriocin activity in supernatants of L. petauri B1726 and purification and mass spectrometry identified the compound as garvicin Q. Further experiments suggest that garvicin Q adsorbs to biomass of various susceptible and insusceptible bacteria and support the hypothesis that garvicin Q requires a mannose-family phosphotransferase system (PTSMan) as receptor to kill target bacteria by disruption of membrane integrity. Heterologous expression of a synthetic garQICD operon was established in Corynebacterium glutamicum demonstrating that genes garQICD are responsible for biosynthesis and secretion of garvicin Q. Moreover, production of garvicin Q by the recombinant C. glutamicum strain was improved by using a defined medium yet product levels were still considerably lower than with the natural L. petauri B1726 producer strain.Collectively, our data identifies the genetic basis for production of the bacteriocin garvicin Q by L. petauri B1726 and provides insights into the receptor and mode of action of garvicin Q. Moreover, we successfully performed first attempts towards biotechnological production of this interesting bacteriocin using natural and heterologous hosts.


Assuntos
Bacteriocinas , Humanos , Bacteriocinas/farmacologia , Antibacterianos/farmacologia , Óperon , Bactérias/metabolismo
5.
Metab Eng ; 68: 34-45, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34492380

RESUMO

Bacteriocins are antimicrobial peptides produced by bacteria to inhibit competitors in their natural environments. Some of these peptides have emerged as commercial food preservatives and, due to the rapid increase in antibiotic resistant bacteria, are also discussed as interesting alternatives to antibiotics for therapeutic purposes. Currently, commercial bacteriocins are produced exclusively with natural producer organisms on complex substrates and are sold as semi-purified preparations or crude fermentates. To allow clinical application, efficacy of production and purity of the product need to be improved. This can be achieved by shifting production to recombinant microorganisms. Here, we identify Corynebacterium glutamicum as a suitable production host for the bacteriocin pediocin PA-1. C. glutamicum CR099 shows resistance to high concentrations of pediocin PA-1 and the bacteriocin was not inactivated when spiked into growing cultures of this bacterium. Recombinant C. glutamicum expressing a synthetic pedACDCgl operon releases a compound that has potent antimicrobial activity against Listeria monocytogenes and Listeria innocua and matches size and mass:charge ratio of commercial pediocin PA-1. Fermentations in shake flasks and bioreactors suggest that low levels of dissolved oxygen are favorable for production of pediocin. Under these conditions, however, reduced activity of the TCA cycle resulted in decreased availability of the important pediocin precursor l-asparagine suggesting options for further improvement. Overall, we demonstrate that C. glutamicum is a suitable host for recombinant production of bacteriocins of the pediocin family.


Assuntos
Bacteriocinas , Corynebacterium glutamicum , Listeria , Bacteriocinas/genética , Corynebacterium glutamicum/genética , Pediocinas/genética
6.
Int J Mol Sci ; 22(16)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34445321

RESUMO

Listeria monocytogenes is an important food-borne pathogen and a serious concern to food industries. Bacteriocins are antimicrobial peptides produced naturally by a wide range of bacteria mostly belonging to the group of lactic acid bacteria (LAB), which also comprises many strains used as starter cultures or probiotic supplements. Consequently, multifunctional strains that produce bacteriocins are an attractive approach to combine a green-label approach for food preservation with an important probiotic trait. Here, a collection of bacterial isolates from raw cow's milk was typed by 16S rRNA gene sequencing and MALDI-Biotyping and supernatants were screened for the production of antimicrobial compounds. Screening was performed with live Listeria monocytogenes biosensors using a growth-dependent assay and pHluorin, a pH-dependent protein reporting membrane damage. Purification by cation exchange chromatography and further investigation of the active compounds in supernatants of two isolates belonging to the species Pediococcus acidilactici and Lactococcus garvieae suggest that their antimicrobial activity is related to heat-stable proteins/peptides that presumably belong to the class IIa bacteriocins. In conclusion, we present a pipeline of methods for high-throughput screening of strain libraries for potential starter cultures and probiotics producing antimicrobial compounds and their identification and analysis.


Assuntos
Antibacterianos/farmacologia , Bacteriocinas/farmacologia , Descoberta de Drogas/métodos , Listeria monocytogenes/efeitos dos fármacos , Probióticos , Animais , Antibacterianos/biossíntese , Bacteriocinas/biossíntese , Lactococcus/isolamento & purificação , Lactococcus/metabolismo , Microbiota , Leite/microbiologia , Pediococcus acidilactici/isolamento & purificação , Pediococcus acidilactici/metabolismo
7.
Mol Microbiol ; 111(5): 1335-1354, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30748039

RESUMO

Many bacteria take up carbohydrates by membrane-integral sugar specific phosphoenolpyruvate-dependent carbohydrate:phosphotransferase systems (PTS). Although the PTS is centrally involved in regulation of carbon metabolism in different bacteria, little is known about localization and putative oligomerization of the permease subunits (EII). Here, we analyzed localization of the fructose specific PtsF and the glucose specific PtsG transporters, as well as the general components EI and HPr from Corynebacterium glutamicum using widefield and single molecule localization microscopy. PtsF and PtsG form membrane embedded clusters that localize in a punctate pattern. Size, number and fluorescence of the membrane clusters change upon presence or absence of the transported substrate, and a direct influence of EI and HPr was not observed. In presence of the transport substrate, EII clusters significantly increased in size. Photo-activated localization microscopy data revealed that, in presence of different carbon sources, the number of EII proteins per cluster remains the same, however, the density of these clusters reduces. Our work reveals a simple mechanism for efficient membrane occupancy regulation. Clusters of PTS EII transporters are densely packed in absence of a suitable substrate. In presence of a transported substrate, the EII proteins in individual clusters occupy larger membrane areas.


Assuntos
Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/enzimologia , Frutose/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana Transportadoras/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Proteínas de Bactérias/genética , Transporte Biológico , Corynebacterium glutamicum/genética , Glucose/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Fosforilação
8.
Plasmid ; 95: 11-15, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29331350

RESUMO

The Gram-positive Corynebacterium glutamicum is widely known for its application in the industrial production of amino acids and as a non-pathogenic model organism for cell wall biosynthesis in the group of CMN bacteria. For biotechnological and physiological studies often co-expression of recombinant genes is required, however for C. glutamicum no vector for the independent co-expression of two genes was described. We here created the novel expression vector pOGOduet for C. glutamicum, which carries the ColE1 replicon of E. coli and the pBL1 replicon of C. glutamicum and two independently inducible promoters Ptac and Ptet each followed by unique multiple cloning sites. Functionality of pOGOduet is tested by coexpression of genes for the fluorescent proteins eCFP and mVenus; fluorescence of the reporters varies in dependence of the inducer concentrations present in the culture broth. These experiments demonstrate that the vector pOGOduet fulfills the task for individually inducible expression of two genes of interest in C. glutamicum.


Assuntos
Proteínas de Bactérias/genética , Corynebacterium glutamicum/genética , Regulação Bacteriana da Expressão Gênica , Vetores Genéticos/química , Proteínas de Fluorescência Verde/genética , Proteínas Luminescentes/genética , Plasmídeos/química , Proteínas de Bactérias/metabolismo , Sequência de Bases , Clonagem Molecular , Corynebacterium glutamicum/efeitos dos fármacos , Corynebacterium glutamicum/metabolismo , Escherichia coli/química , Genes Reporter , Vetores Genéticos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Isopropiltiogalactosídeo/farmacologia , Proteínas Luminescentes/metabolismo , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Replicon
10.
J Bacteriol ; 198(16): 2204-18, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27274030

RESUMO

UNLABELLED: Corynebacterium glutamicum metabolizes sialic acid (Neu5Ac) to fructose-6-phosphate (fructose-6P) via the consecutive activity of the sialic acid importer SiaEFGI, N-acetylneuraminic acid lyase (NanA), N-acetylmannosamine kinase (NanK), N-acetylmannosamine-6P epimerase (NanE), N-acetylglucosamine-6P deacetylase (NagA), and glucosamine-6P deaminase (NagB). Within the cluster of the three operons nagAB, nanAKE, and siaEFGI for Neu5Ac utilization a fourth operon is present, which comprises cg2936, encoding a GntR-type transcriptional regulator, here named NanR. Microarray studies and reporter gene assays showed that nagAB, nanAKE, siaEFGI, and nanR are repressed in wild-type (WT) C. glutamicum but highly induced in a ΔnanR C. glutamicum mutant. Purified NanR was found to specifically bind to the nucleotide motifs A[AC]G[CT][AC]TGATGTC[AT][TG]ATGT[AC]TA located within the nagA-nanA and nanR-sialA intergenic regions. Binding of NanR to promoter regions was abolished in the presence of the Neu5Ac metabolism intermediates GlcNAc-6P and N-acetylmannosamine-6-phosphate (ManNAc-6P). We observed consecutive utilization of glucose and Neu5Ac as well as fructose and Neu5Ac by WT C. glutamicum, whereas the deletion mutant C. glutamicum ΔnanR simultaneously consumed these sugars. Increased reporter gene activities for nagAB, nanAKE, and nanR were observed in cultivations of WT C. glutamicum with Neu5Ac as the sole substrate compared to cultivations when fructose was present. Taken together, our findings show that Neu5Ac metabolism in C. glutamicum is subject to catabolite repression, which involves control by the repressor NanR. IMPORTANCE: Neu5Ac utilization is currently regarded as a common trait of both pathogenic and commensal bacteria. Interestingly, the nonpathogenic soil bacterium C. glutamicum efficiently utilizes Neu5Ac as a substrate for growth. Expression of genes for Neu5Ac utilization in C. glutamicum is here shown to depend on the transcriptional regulator NanR, which is the first GntR-type regulator of Neu5Ac metabolism not to use Neu5Ac as effector but relies instead on the inducers GlcNAc-6P and ManNAc-6P. The identification of conserved NanR-binding sites in intergenic regions within the operons for Neu5Ac utilization in pathogenic Corynebacterium species indicates that the mechanism for the control of Neu5Ac catabolism in C. glutamicum by NanR as described in this work is probably conserved within this genus.


Assuntos
Corynebacterium glutamicum/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Ácido N-Acetilneuramínico/metabolismo , Acetilglucosamina/análogos & derivados , Corynebacterium glutamicum/genética , DNA Bacteriano , Proteínas de Ligação a DNA/genética , Regulação para Baixo , Deleção de Genes , Glucosamina/metabolismo , Manosefosfatos , Metabolismo , Ácido N-Acetilneuramínico/genética , Regiões Promotoras Genéticas , Ligação Proteica
11.
Microorganisms ; 11(2)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36838266

RESUMO

Cyclic di-adenosine monophosphate (c-di-AMP) is a bacterial second messenger discovered in Bacillus subtilis and involved in potassium homeostasis, cell wall maintenance and/or DNA stress response. As the role of c-di-AMP has been mostly studied in Firmicutes, we sought to increase the understanding of its role in Actinobacteria, namely in Corynebacterium glutamicum. This organism is a well-known industrial production host and a model organism for pathogens, such as C. diphtheriae or Mycobacterium tuberculosis. Here, we identify and analyze the minimal set of two C. glutamicum enzymes, the diadenylate cyclase DisA and the phosphodiesterase PdeA, responsible for c-di-AMP metabolism. DisA synthesizes c-di-AMP from two molecules of ATP, whereas PdeA degrades c-di-AMP, as well as the linear degradation intermediate phosphoadenylyl-(3'→5')-adenosine (pApA) to two molecules of AMP. Here, we show that a ydaO/kimA-type c-di-AMP-dependent riboswitch controls the expression of the strictly regulated cell wall peptidase gene nlpC in C. glutamicum. In contrast to previously described members of the ydaO/kimA-type riboswitches, our results suggest that the C. glutamicum nlpC riboswitch likely affects the translation instead of the transcription of its downstream gene. Although strongly regulated by different mechanisms, we show that the absence of nlpC, the first known regulatory target of c-di-AMP in C. glutamicum, is not detrimental for this organism under the tested conditions.

12.
Microbiol Spectr ; 11(1): e0175622, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36541778

RESUMO

Genome analysis of Corynebacterium lactis revealed a bacteriocin gene cluster encoding a putative bacteriocin of the linaridin family of ribosomally synthesized and posttranslationally modified peptides (RiPPs). The locus harbors typical linaridin modification enzymes but lacks genes for a decarboxylase and methyltransferase, which is unusual for type B linaridins. Supernatants of Corynebacterium lactis RW3-42 showed antimicrobial activity against Corynebacterium glutamicum. Deletion of the precursor gene crdA clearly linked the antimicrobial activity of the producer strain to the identified gene cluster. Following purification, we observed potent activity of the peptide against Actinobacteria, mainly other members of the genus Corynebacterium, including the pathogenic species Corynebacterium striatum and Corynebacterium amycolatum. Also, low activity against some Firmicutes was observed, but there was no activity against Gram-negative species. The peptide is resilient towards heat but sensitive to proteolytic degradation by trypsin and proteinase K. Analysis by mass spectrometry indicates that corynaridin is processed by cleaving off the leader sequence at a conserved motif and posttranslationally modified by dehydration of all threonine and serin residues, resulting in a monoisotopic mass of 3,961.19 Da. Notably, time-kill kinetics and experiments using live biosensors to monitor membrane integrity suggest bactericidal activity that does not involve formation of pores in the cytoplasmic membrane. As Corynebacterium species are ubiquitous in nature and include important commensals and pathogens of mammalian organisms, secretion of bacteriocins by species of this genus could be a hitherto neglected trait with high relevance for intra- and interspecies competition and infection. IMPORTANCE Bacteriocins are antimicrobial peptides produced by bacteria to fend off competitors in ecological niches and are considered to be important factors influencing the composition of microbial communities. However, bacteriocin production by bacteria of the genus Corynebacterium has been a hitherto neglected trait, although its species are ubiquitous in nature and make up large parts of the microbiome of humans and animals. In this study, we describe and characterize a novel linaridin family bacteriocin from Corynebacterium lactis and show its narrow-spectrum activity, mainly against other actinobacteria. Moreover, we were able to extend the limited knowledge on linaridin bioactivity in general and for the first time describe the bactericidal activity of such a bacteriocin. Interestingly, the peptide, which was named corynaridin, appears bactericidal, but without formation of pores in the bacterial membrane.


Assuntos
Actinobacteria , Bacteriocinas , Humanos , Animais , Bacteriocinas/genética , Bacteriocinas/farmacologia , Antibacterianos/química , Corynebacterium/genética , Peptídeos , Actinobacteria/metabolismo , Bactérias/metabolismo , Mamíferos
13.
Microbiologyopen ; 11(4): e1304, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36031957

RESUMO

The global increase in antibiotic resistance of pathogenic microorganisms requires the identification and characterization of novel antimicrobials. Bacterial biosensors expressing fluorescent proteins such as pHluorin variants are suitable for high-throughput screenings. Here, we present Listeria spp. pH-sensitive biosensors with improved fluorescence for single-cell analysis of antimicrobials by flow cytometry.


Assuntos
Anti-Infecciosos , Técnicas Biossensoriais , Listeria , Bactérias , Citometria de Fluxo
14.
Microorganisms ; 9(3)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808930

RESUMO

Post-translationally modified, (methyl-)lanthionine-containing peptides are produced by several Gram-positive bacteria. These so-called lantibiotics have potent activity against various bacterial pathogens including multidrug-resistant strains and are thus discussed as alternatives to antibiotics. Several naturally occurring mechanisms of resistance against lantibiotics have been described for bacteria, including cell envelope modifications, ABC-transporters, lipoproteins and peptidases. Corynebacterium species are widespread in nature and comprise important pathogens, commensals as well as environmentally and biotechnologically relevant species. Yet, little is known about lantibiotic biosynthesis and resistance in this genus. Here, we present a comprehensive in silico prediction of lantibiotic resistance traits in this important group of Gram-positive bacteria. Our analyses suggest that enzymes for cell envelope modification, peptidases as well as ABC-transporters involved in peptide resistance are widely distributed in the genus. Based on our predictions, we analyzed the susceptibility of six Corynebacterium species to nisin and found that those without dedicated resistance traits are more susceptible and unable to adapt to higher concentrations. In addition, we were able to identify lantibiotic resistance operons encoding for peptidases, ABC-transporters and two-component systems with an unusual predicted structure that are conserved in the genus Corynebacterium. Heterologous expression shows that these operons indeed confer resistance to the lantibiotic nisin.

15.
Microbiol Spectr ; 9(2): e0029921, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34643411

RESUMO

Bovine mastitis infection in dairy cattle is a significant economic burden for the dairy industry globally. To reduce the use of antibiotics in treatment of clinical mastitis, new alternative treatment options are needed. Antimicrobial peptides from bacteria, also known as bacteriocins, are potential alternatives for combating mastitis pathogens. In search of novel bacteriocins against mastitis pathogens, we screened samples of Norwegian bovine raw milk and found a Streptococcus uberis strain with potent antimicrobial activity toward Enterococcus, Streptococcus, Listeria, and Lactococcus. Whole-genome sequencing of the strain revealed a multibacteriocin gene cluster encoding one class IIb bacteriocin, two class IId bacteriocins, in addition to a three-component regulatory system and a dedicated ABC transporter. Isolation and purification of the antimicrobial activity from culture supernatants resulted in the detection of a 6.3-kDa mass peak by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry, a mass corresponding to the predicted size of one of the class IId bacteriocins. The identification of this bacteriocin, called ubericin K, was further confirmed by in vitro protein synthesis, which showed the same inhibitory spectrum as the purified antimicrobial compound. Ubericin K shows highest sequence similarity to the class IId bacteriocins bovicin 255, lactococcin A, and garvieacin Q. We found that ubericin K uses the sugar transporter mannose phosphotransferase (PTS) as a target receptor. Further, by using the pHlourin sensor system to detect intracellular pH changes due to leakage across the membrane, ubericin K was shown to be a pore former, killing target cells by membrane disruption. IMPORTANCE Bacterial infections in dairy cows are a major burden to farmers worldwide because infected cows require expensive treatments and produce less milk. Today, infected cows are treated with antibiotics, a practice that is becoming less effective due to antibiotic resistance. Compounds other than antibiotics also exist that kill bacteria causing infections in cows; these compounds, known as bacteriocins, are natural products produced by other bacteria in the environment. In this work, we discover a new bacteriocin that we call ubericin K, which kills several species of bacteria known to cause infections in dairy cows. We also use in vitro synthesis as a novel method for rapidly characterizing bacteriocins directly from genomic data, which could be useful for other researchers. We believe that ubericin K and the methods described in this work will aid in the transition away from antibiotics in the dairy industry.


Assuntos
Antibacterianos/uso terapêutico , Bacteriocinas/uso terapêutico , Doenças dos Bovinos/tratamento farmacológico , Mastite Bovina/tratamento farmacológico , Streptococcus/metabolismo , Animais , Membrana Externa Bacteriana/efeitos dos fármacos , Membrana Externa Bacteriana/patologia , Bacteriocinas/genética , Bovinos , Doenças dos Bovinos/microbiologia , Enterococcus/efeitos dos fármacos , Enterococcus/crescimento & desenvolvimento , Feminino , Lactococcus/efeitos dos fármacos , Lactococcus/crescimento & desenvolvimento , Listeria/efeitos dos fármacos , Listeria/crescimento & desenvolvimento , Mastite Bovina/microbiologia , Testes de Sensibilidade Microbiana , Fosfotransferases/metabolismo , Percepção de Quorum , Streptococcus/genética
16.
Front Microbiol ; 9: 2564, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30405597

RESUMO

Analyses of intracellular NADPH concentrations are prerequisites for the design of microbial production strains and process optimization. mBFP was described as metagenomics derived, blue fluorescent protein showing NADPH-dependent fluorescence. Characterization of mBFP showed a high specificity for binding of NADPH (K D 0.64 mM) and no binding of NADH, the protein exclusively amplified fluorescence of NADPH. mBFP catalyzed the NADPH-dependent reduction of benzaldehyde and further aldehydes, which fits to its classification as short chain dehydrogenase. For in vivo NADPH analyses a codon-optimized gene for mBFP was introduced into Corynebacterium glutamicum WT and the phosphoglucoisomerase-deficient strain C. glutamicum Δpgi, which accumulates high levels of NADPH. For determination of intracellular NADPH concentrations by mBFP a calibration method with permeabilized cells was developed. By this means an increase of intracellular NADPH concentrations within seconds after the addition of glucose to nutrient-starved cells of both C. glutamicum WT and C. glutamicum Δpgi was observed; as expected the internal NADPH concentration was significantly higher for C. glutamicum Δpgi (0.31 mM) when compared to C. glutamicum WT (0.19 mM). Addition of paraquat to E. coli cells carrying mBFP led as expected to an immediate decrease of intracellular NADPH concentrations, showing the versatile use of mBFP as intracellular sensor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA