Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 113(34): 9446-50, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27506792

RESUMO

Lipoyl synthase (LipA) catalyzes the insertion of two sulfur atoms at the unactivated C6 and C8 positions of a protein-bound octanoyl chain to produce the lipoyl cofactor. To activate its substrate for sulfur insertion, LipA uses a [4Fe-4S] cluster and S-adenosylmethionine (AdoMet) radical chemistry; the remainder of the reaction mechanism, especially the source of the sulfur, has been less clear. One controversial proposal involves the removal of sulfur from a second (auxiliary) [4Fe-4S] cluster on the enzyme, resulting in destruction of the cluster during each round of catalysis. Here, we present two high-resolution crystal structures of LipA from Mycobacterium tuberculosis: one in its resting state and one at an intermediate state during turnover. In the resting state, an auxiliary [4Fe-4S] cluster has an unusual serine ligation to one of the irons. After reaction with an octanoyllysine-containing 8-mer peptide substrate and 1 eq AdoMet, conditions that allow for the first sulfur insertion but not the second insertion, the serine ligand dissociates from the cluster, the iron ion is lost, and a sulfur atom that is still part of the cluster becomes covalently attached to C6 of the octanoyl substrate. This intermediate structure provides a clear picture of iron-sulfur cluster destruction in action, supporting the role of the auxiliary cluster as the sulfur source in the LipA reaction and describing a radical strategy for sulfur incorporation into completely unactivated substrates.


Assuntos
Proteínas de Bactérias/química , Proteínas Ferro-Enxofre/química , Mycobacterium tuberculosis/química , S-Adenosilmetionina/química , Enxofre/química , Motivos de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Ferro/química , Ferro/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Cinética , Modelos Moleculares , Mycobacterium tuberculosis/enzimologia , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , S-Adenosilmetionina/metabolismo , Especificidade por Substrato , Enxofre/metabolismo
2.
Proc Natl Acad Sci U S A ; 111(43): E4551-9, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25313043

RESUMO

Chemical fluorophores offer tremendous size and photophysical advantages over fluorescent proteins but are much more challenging to target to specific cellular proteins. Here, we used Rosetta-based computation to design a fluorophore ligase that accepts the red dye resorufin, starting from Escherichia coli lipoic acid ligase. X-ray crystallography showed that the design closely matched the experimental structure. Resorufin ligase catalyzed the site-specific and covalent attachment of resorufin to various cellular proteins genetically fused to a 13-aa recognition peptide in multiple mammalian cell lines and in primary cultured neurons. We used resorufin ligase to perform superresolution imaging of the intermediate filament protein vimentin by stimulated emission depletion and electron microscopies. This work illustrates the power of Rosetta for major redesign of enzyme specificity and introduces a tool for minimally invasive, highly specific imaging of cellular proteins by both conventional and superresolution microscopies.


Assuntos
Biologia Computacional/métodos , Corantes Fluorescentes/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Ligases/metabolismo , Oxazinas/metabolismo , Coloração e Rotulagem , Animais , Biocatálise , Células COS , Sobrevivência Celular , Chlorocebus aethiops , Cumarínicos , Cristalografia por Raios X , Células HEK293 , Células HeLa , Humanos , Imageamento Tridimensional , Microscopia Eletrônica , Modelos Moleculares , Mutagênese , Oxazinas/síntese química , Oxazinas/química , Ratos
3.
J Biol Chem ; 290(7): 3964-71, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25477505

RESUMO

S-Adenosylmethionine (SAM, also known as AdoMet) radical enzymes use SAM and a [4Fe-4S] cluster to catalyze a diverse array of reactions. They adopt a partial triose-phosphate isomerase (TIM) barrel fold with N- and C-terminal extensions that tailor the structure of the enzyme to its specific function. One extension, termed a SPASM domain, binds two auxiliary [4Fe-4S] clusters and is present within peptide-modifying enzymes. The first structure of a SPASM-containing enzyme, anaerobic sulfatase-maturating enzyme (anSME), revealed unexpected similarities to two non-SPASM proteins, butirosin biosynthetic enzyme 2-deoxy-scyllo-inosamine dehydrogenase (BtrN) and molybdenum cofactor biosynthetic enzyme (MoaA). The latter two enzymes bind one auxiliary cluster and exhibit a partial SPASM motif, coined a Twitch domain. Here we review the structure and function of auxiliary cluster domains within the SAM radical enzyme superfamily.


Assuntos
Coenzimas/metabolismo , Radicais Livres/química , Proteínas Ferro-Enxofre/metabolismo , Metaloproteínas/metabolismo , Proteínas Metiltransferases/metabolismo , Pteridinas/metabolismo , S-Adenosilmetionina/metabolismo , Sulfatases/metabolismo , Triose-Fosfato Isomerase/metabolismo , Animais , Humanos , Metilação , Cofatores de Molibdênio , Estrutura Terciária de Proteína , S-Adenosilmetionina/química
4.
Proc Natl Acad Sci U S A ; 110(40): 15949-54, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24048029

RESUMO

The 2-deoxy-scyllo-inosamine (DOIA) dehydrogenases are key enzymes in the biosynthesis of 2-deoxystreptamine-containing aminoglycoside antibiotics. In contrast to most DOIA dehydrogenases, which are NAD-dependent, the DOIA dehydrogenase from Bacillus circulans (BtrN) is an S-adenosyl-l-methionine (AdoMet) radical enzyme. To examine how BtrN employs AdoMet radical chemistry, we have determined its structure with AdoMet and substrate to 1.56 Å resolution. We find a previously undescribed modification to the core AdoMet radical fold: instead of the canonical (ß/α)6 architecture, BtrN displays a (ß5/α4) motif. We further find that an auxiliary [4Fe-4S] cluster in BtrN, thought to bind substrate, is instead implicated in substrate-radical oxidation. High structural homology in the auxiliary cluster binding region between BtrN, fellow AdoMet radical dehydrogenase anSME, and molybdenum cofactor biosynthetic enzyme MoaA provides support for the establishment of an AdoMet radical structural motif that is likely common to ~6,400 uncharacterized AdoMet radical enzymes.


Assuntos
Bacillus/enzimologia , Vias Biossintéticas/genética , Sulfato de Butirosina/biossíntese , Desidrogenases de Carboidrato/química , Modelos Moleculares , Conformação Proteica , Desidrogenases de Carboidrato/metabolismo , Cristalização , Primers do DNA/genética , Compostos de Ferro/metabolismo , Estrutura Molecular , Ligação Proteica , S-Adenosilmetionina/metabolismo , Compostos de Enxofre/metabolismo
5.
Proc Natl Acad Sci U S A ; 110(21): 8519-24, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23650368

RESUMO

Arylsulfatases require a maturating enzyme to perform a co- or posttranslational modification to form a catalytically essential formylglycine (FGly) residue. In organisms that live aerobically, molecular oxygen is used enzymatically to oxidize cysteine to FGly. Under anaerobic conditions, S-adenosylmethionine (AdoMet) radical chemistry is used. Here we present the structures of an anaerobic sulfatase maturating enzyme (anSME), both with and without peptidyl-substrates, at 1.6-1.8 Å resolution. We find that anSMEs differ from their aerobic counterparts in using backbone-based hydrogen-bonding patterns to interact with their peptidyl-substrates, leading to decreased sequence specificity. These anSME structures from Clostridium perfringens are also the first of an AdoMet radical enzyme that performs dehydrogenase chemistry. Together with accompanying mutagenesis data, a mechanistic proposal is put forth for how AdoMet radical chemistry is coopted to perform a dehydrogenation reaction. In the oxidation of cysteine or serine to FGly by anSME, we identify D277 and an auxiliary [4Fe-4S] cluster as the likely acceptor of the final proton and electron, respectively. D277 and both auxiliary clusters are housed in a cysteine-rich C-terminal domain, termed SPASM domain, that contains homology to ~1,400 other unique AdoMet radical enzymes proposed to use [4Fe-4S] clusters to ligate peptidyl-substrates for subsequent modification. In contrast to this proposal, we find that neither auxiliary cluster in anSME bind substrate, and both are fully ligated by cysteine residues. Instead, our structural data suggest that the placement of these auxiliary clusters creates a conduit for electrons to travel from the buried substrate to the protein surface.


Assuntos
Proteínas de Bactérias/metabolismo , Clostridium perfringens/metabolismo , Radicais Livres/metabolismo , Glicina/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , S-Adenosilmetionina/metabolismo , Anaerobiose/fisiologia , Proteínas de Bactérias/genética , Clostridium perfringens/genética , Glicina/análogos & derivados , Glicina/genética , Oxirredução , Estrutura Terciária de Proteína , S-Adenosilmetionina/genética
6.
Chem Biol ; 19(7): 855-65, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-22840773

RESUMO

The indolocarbazole biosynthetic enzymes StaC, InkE, RebC, and AtmC mediate the degree of oxidation of chromopyrrolic acid on route to the natural products staurosporine, K252a, rebeccamycin, and AT2433-A1, respectively. Here, we show that StaC and InkE, which mediate a net 4-electron oxidation, bind FAD with a micromolar K(d), whereas RebC and AtmC, which mediate a net 8-electron oxidation, bind FAD with a nanomolar K(d) while displaying the same FAD redox properties. We further create RebC-10x, a RebC protein with ten StaC-like amino acid substitutions outside of previously characterized FAD-binding motifs and the complementary StaC-10x. We find that these mutations mediate both FAD affinity and product specificity, with RebC-10x displaying higher StaC activity than StaC itself. X-ray structures of this StaC catalyst identify the substrate of StaC as 7-carboxy-K252c and suggest a unique mechanism for this FAD-dependent enzyme.


Assuntos
Carbazóis/metabolismo , Flavinas/metabolismo , Oxigenases de Função Mista/metabolismo , Biocatálise , Carbazóis/química , Modelos Moleculares , Estrutura Molecular
7.
J Am Chem Soc ; 128(31): 10320-5, 2006 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-16881664

RESUMO

We report analyses of electrochemical and spectroscopic measurements on cytochrome P450 BM3 (BM3) in didodecyldimethylammonium bromide (DDAB) surfactant films. Electronic absorption spectra of BM3-DDAB films on silica slides reveal the characteristic low-spin FeIII heme absorption maximum at 418 nm. A prominent peak in the absorption spectrum of BM3 FeII-CO in a DDAB dispersion is at 448 nm; in spectra of aged samples, a shoulder at approximately 420 nm is present. Infrared absorption spectra of the BM3 FeII-CO complex in DDAB dispersions feature a time-dependent shift of the carbonyl stretching frequency from 1950 to 2080 cm(-1). Voltammetry of BM3-DDAB films on graphite electrodes gave the following results: FeIII/II E(1/2) at -260 mV (vs SCE), approximately 300 mV positive of the value measured in solution; DeltaS degrees (rc), DeltaS degrees , and DeltaH degrees values for water-ligated BM3 in DDAB are -98 J mol(-1) K(-1), -163 J mol(-1) K(-1), and -47 kJ mol(-1), respectively; values for the imidazole-ligated enzyme are -8 J mol(-1) K(-1), -73 J mol(-1) K(-1), and -21 kJ mol(-1). Taken together, the data suggest that BM3 adopts a compact conformation within DDAB that in turn strengthens hydrogen bonding interactions with the heme axial cysteine, producing a P420-like species with decreased electron density around the metal center.


Assuntos
Proteínas de Bactérias/química , Sistema Enzimático do Citocromo P-450/química , Eletroquímica/métodos , Oxigenases de Função Mista/química , Análise Espectral/métodos , Tensoativos/química , NADPH-Ferri-Hemoproteína Redutase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA