RESUMO
Transition metal dichalcogenide (TMDC) monolayers with their direct band gap in the visible to near-infrared spectral range have emerged over the past years as highly promising semiconducting materials for optoelectronic applications. Progress in scalable fabrication methods for TMDCs like metal-organic chemical vapor deposition (MOCVD) and the ambition to exploit specific material properties, such as mechanical flexibility or high transparency, highlight the importance of suitable device concepts and processing techniques. In this work, we make use of the high transparency of TMDC monolayers to fabricate transparent light-emitting devices (LEDs). MOCVD-grown WS2is embedded as the active material in a scalable vertical device architecture and combined with a silver nanowire (AgNW) network as a transparent top electrode. The AgNW network was deposited onto the device by a spin-coating process, providing contacts with a sheet resistance below 10 Ω sq-1and a transmittance of nearly 80%. As an electron transport layer we employed a continuous 40 nm thick zinc oxide (ZnO) layer, which was grown by atmospheric pressure spatial atomic layer deposition (AP-SALD), a precise tool for scalable deposition of oxides with defined thickness. With this, LEDs with an average transmittance over 60% in the visible spectral range, emissive areas of several mm2and a turn-on voltage of around 3 V are obtained.
RESUMO
The Langmuir-Blodgett technique is one of the most controlled methods to deposit monomolecular layers of floating or surface active materials but has lacked the ability to coat truly large-area substrates. In this work, by manipulating single-layer dispersions of graphene oxide (GO) and thermally exfoliated GO into water-immiscible spreading solvents, unlike traditional Langmuir-Blodgett deposition which requires densification achieved by compressing barriers, we demonstrate the ability to control the 2D aggregation and densification behavior of these floating materials using a barrier-free method. This is done by controlling the edge-to-edge interactions through modified subphase conditions and by utilizing the distance-dependent spreading pressure of the deposition solvent. These phenomena allow substrates to be coated by continuous deposition and substrate withdrawal-enabling roll-to-roll deposition and patterning of large-area substrates such as flexible polyethylene terephthalate. The aggregation and solvent-driven densification phenomena are examined by in situ Brewster angle video microscopy and by measuring the local spreading pressure induced by the spreading solvent acting on the floating materials using a Langmuir-Adam balance. As an example, the performance of films deposited in this way is assessed as passivation layers for Ag nanowire-based transparent conductors.
RESUMO
Transparent electrodes such as indium tin oxide and random meshes of silver nanowires (AgNWs) have isotropic in-plane properties. However, we show that imparting some alignment to AgNWs can create anisotropic transparency and electrical conductivity characteristics that may benefit many applications. For example, liquid crystal displays and the touch sensors on top of them often only need to be transparent to one type of polarized light as well as predominantly conductive in only one direction. Herein, AgNWs are slightly preferentially aligned during their deposition by rod coating. Compared to randomly oriented AgNW films, the alignment boosts the transparency to perpendicularly polarized light, as well as achieves a higher transparency for a given sheet resistance in one direction compared to randomly oriented AgNWs films. These factors together increase the transparency of a 16 Ω/sq electrode by 7.3 percentage points. The alignment technique is cheap and scalable, compatible with roll-to-roll processes, and most importantly does not require extra processing steps, as rod coating is already a standard process for AgNW electrode fabrication.
RESUMO
A method for automated quantification of the alignment of one-dimensional (1D) nanostructures from microscopy imaging is presented. Nanostructure alignment metrics are formulated and shown to be able to rigorously quantify the orientational order of nanostructures within a two-dimensional domain (surface). A complementary image processing method is also presented which enables robust processing of microscopy images where overlapping nanostructures might be present. Scanning electron microscopy (SEM) images of nanowire-covered surfaces are analyzed using the presented methods and it is shown that past single parameter alignment metrics are insufficient for highly aligned domains. Through the use of multiple parameter alignment metrics, automated quantitative analysis of SEM images is shown to be possible and the alignment characteristics of different samples are able to be quantitatively compared using a similarity metric. The results of this work provide researchers in nanoscience and nanotechnology with a rigorous method for the determination of structure/property relationships, where alignment of 1D nanostructures is significant.
RESUMO
The growth of AgCl nanocubes directly on the sidewalls of Ag nanowires is demonstrated. The nanocubes can be simply obtained through extended low temperature annealing of polyol-synthesized silver nanowires in a vacuum. The length of time and temperature of the anneal and the diameter of the nanowire affect the size and density of the nanocubes obtained. It is hypothesized that the AgCl material is supplied from reactants leftover from the silver nanowire synthesis. This novel hybrid nanostructure may have applications in areas such as photovoltaics, surface enhanced Raman spectroscopy, and photocatalysis.
RESUMO
Although nanowire (NW) alignment has been previously investigated, minimizing limitations such as process complexity and NW breakage, as well as quantifying the quality of alignment, have not been sufficiently addressed. A simple, low cost, large-area, and versatile alignment method is reported that is applicable for NWs either grown on a substrate or synthesized in solution. Metal and semiconductor NWs with average lengths of up to 16 µm are aligned through the stretching of polyvinyl alcohol (PVA) films, which compared to other stretching methods results in superior alignment because of the large stretching ratio of PVA. Poly[oxy(methyl-1,2-ethanediyl)] is employed as lubricant to prevent NW breakage. To quantify NW alignment, a simple and effective image processing method is presented. The alignment process results in an order parameter (S) of NW alignment as high as 0.97.
RESUMO
There are many reports of ZnSe nanowire synthesis, but photoluminescence measurements on these nanowires indicate weak band-edge and high sub-bandgap defect emission. The two main contributors to the non-optimal photoluminescence are nanowire growth at high temperatures and unpassivated surface states. In this paper, the synthesis of II-VI core-shell nanowires by metal organic vapor phase epitaxy is reported. We demonstrate that larger bandgap shells that passivate the nanowire surface states can be deposited around the nanowires by increasing the partial pressures of the shell reactants without a large increase in growth temperature, allowing high quality material to be obtained. The deposition of nearly lattice-matched ZnMgSSe shells on the ZnSe nanowires increases the band-edge luminescent intensity of the ZnSe nanowires by more than four orders of magnitude and improves the band-edge to defect photoluminescence intensity ratio to 12,000:1. The corresponding full widths at half maximum of the band-edge exciton peaks of the core-shell nanowires can be as narrow as 2.8 nm. It is also shown that magnesium and chlorine can be incorporated into the ZnSe nanowire cores, which shortens the emission wavelength and is known to act as an n-type dopant, respectively.
RESUMO
We report that approximately 10% of the Au catalysts that crystallize at the tips of Ge nanowires following growth have the close-packed hexagonal crystal structure rather than the equilibrium face-centered-cubic structure. Transmission electron microscopy results using aberration-corrected imaging, and diffraction and compositional analyses, confirm the hexagonal phase in these 40-50 nm particles. Reports of hexagonal close packing in Au, even in nanoparticle form, are rare, and the observations suggest metastable pathways for the crystallization process. These results bring new considerations to the stabilization of the liquid eutectic alloy at low temperatures that allows for vapor-liquid-solid growth of high quality, epitaxial Ge nanowires below the eutectic temperature.
RESUMO
Nanoporous Si(111) substrates are used to study the effects of Au catalyst coarsening on the nucleation of vapor-liquid-solid-synthesized epitaxial Ge nanowires (NWs) at temperatures less than 400 degrees C. Porous Si substrates, with greater effective interparticle separations for Au surface diffusion than nonporous Si, inhibit catalyst coarsening and agglomeration prior to NW nucleation. This greatly reduces the variation in wire diameter and length and increases the yield compared to nucleation on identically prepared nonporous Si substrates.
Assuntos
Cristalização/métodos , Germânio/química , Ouro/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Silício/química , Catálise , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Nanotecnologia/métodos , Tamanho da Partícula , Transição de Fase , Porosidade , Semicondutores , Propriedades de SuperfícieRESUMO
Elastic strain is a critical factor in engineering the electronic behavior of core-shell semiconductor nanowires and provides the driving force for undesirable surface roughening and defect formation. We demonstrate two independent strategies, chlorine surface passivation and growth of nanowires with low-energy sidewall facets, to avoid strain-induced surface roughening that promotes dislocation nucleation in group IV core-shell nanowires. Metastably strained, dislocation-free, core-shell nanowires are obtained, and axial strains are measured and compared to elasticity model predictions.
RESUMO
Silver nanowire (AgNW) transparent electrodes show promise as an alternative to indium tin oxide (ITO). However, these nanowire electrodes degrade in air, leading to significant resistance increases. We show that passivating the nanowire surfaces with small organic molecules of 11-mercaptoundecanoic acid (MUA) does not affect electrode transparency contrary to typical passivation films, and is inexpensive and simple to deposit. The sheet resistance of a 32 nm diameter silver nanowire network coated with MUA increases by only 12% over 120 days when exposed to atmospheric conditions but kept in the dark. The increase is larger when exposed to daylight (588%), but is still nearly two orders of magnitude lower than the resistance increase of unpassivated networks. The difference between the experiments performed under daylight versus the dark exemplifies the importance of testing passivation materials under light exposure.
RESUMO
Silver nanowires in conjunction with sputter-coated Al-doped ZnO (AZO) thin films were used as a composite transparent top electrode for hybrid radial-junction ZnO nanowire/a-Si:H p-i-n thin-film solar cells. Solar cells with the composite nanowire top contacts attained a short-circuit current density (Jsc) of 13.9 mA/cm2 and a fill factor (FF) of 62% on glass substrates while a Jsc of 13.0 mA/cm2 and FF of 62% was achieved on plastic substrates. The power conversion efficiency (PCE) of the 3-dimensional solar cells improved by up to 60% compared to using AZO electrodes alone due to enhanced coverage of the top electrode over the 3-D structures, decreasing the series resistance of the device by 5×. The composite layer also showed a 10× reduction in sheet resistance compared to the AZO thin-film contact under applied mechanical strain.
RESUMO
Shortage or malfunction of pulmonary surfactant in alveolar space leads to a critical condition termed respiratory distress syndrome (RDS). Surfactant replacement therapy, the major method to treat RDS, is an expensive treatment. In this paper, the effect of poly(ethylene glycol) (PEG) to improve dynamic surface activity of a bovine lipid extract surfactant (BLES) was studied by axisymmetric drop shape analysis (ADSA) and a captive bubble method. The activity of BLES+PEG mixtures was compared to that of a natural surfactant containing surfactant proteins A and D. When PEG was added into BLES mixtures, the surface tension hysteresis of BLES films was minimized when the films were compressed by more than 50%. PEG also helps to quickly restore surfactant films after film collapse. Thus, as far as surface tension effects go, the findings suggest that PEG might be used as a substitute for surfactant-associated protein SP-A in therapeutic surfactant products, and might also be used to reduce the amount of BLES required in clinical applications.
Assuntos
Fosfolipídeos/química , Polietilenoglicóis/farmacologia , Surfactantes Pulmonares/química , Animais , Bovinos , Humanos , Cinética , Fosfolipídeos/isolamento & purificação , Síndrome do Desconforto Respiratório , Estresse Mecânico , Tensão SuperficialRESUMO
The method of multiple scales is used to develop a procedure for obtaining coupled-mode equations in low-contrast nonlinear photonic crystals periodic in one, two, or three dimensions. Coupled-mode equations for three coupled modes in a two-dimensional (2D) hexagonal lattice are obtained in this way and solved numerically. We show that 2D low-contrast nonlinear photonic crystals support optical limiting and intensity-dependent diffraction.
RESUMO
Silver nanowire transparent electrodes are a promising alternative to transparent conductive oxides. However, their surface roughness presents a problem for their integration into devices with thin layers such as organic electronic devices. In this paper, hot rollers are used to soften plastic substrates with heat and mechanically press the nanowires into the substrate surface. By doing so, the root-mean-square surface roughness is reduced to 7 nm and the maximum peak-to-valley value is 30 nm, making the electrodes suitable for typical organic devices. This simple process requires no additional materials, which results in a higher transparency, and is compatible with roll-to-roll fabrication processes. In addition, the adhesion of the nanowires to the substrate significantly increases.
RESUMO
Because of their mechanical flexibility, organic light-emitting diodes (OLEDs) hold great promise as a leading technology for display and lighting applications in wearable electronics. The development of flexible OLEDs requires high-quality transparent conductive electrodes with superior bendability and roll-to-roll manufacturing compatibility to replace indium tin oxide (ITO) anodes. Here, we present a flexible transparent conductor on plastic with embedded silver networks which is used to achieve flexible, highly power-efficient large-area green and white OLEDs. By combining an improved outcoupling structure for simultaneously extracting light in waveguide and substrate modes and reducing the surface plasmonic losses, flexible white OLEDs exhibit a power efficiency of 106 lm W(-1) at 1000 cd m(-2) with angular color stability, which is significantly higher than all other reports of flexible white OLEDs. These results represent an exciting step toward the realization of ITO-free, high-efficiency OLEDs for use in a wide variety of high-performance flexible applications.
RESUMO
Silver nanowire transparent electrodes have received much attention as a replacement for indium tin oxide, particularly in organic solar cells. In this paper, we show that when silver nanowire electrodes conduct current at levels encountered in organic solar cells, the electrodes can fail in as little as 2 days. Electrode failure is caused by Joule heating which causes the nanowires to breakup and thus create an electrical discontinuity in the nanowire film. More heat is created, and thus failure occurs sooner, in more resistive electrodes and at higher current densities. Suggestions to improve the stability of silver nanowire electrodes are given.
RESUMO
We report the selective removal of gold from the tips of germanium nanowires (GeNWs) grown by chemical vapor deposition on gold nanoparticles (AuNPs). Selective removal was accomplished by aqueous hydrochloric acid solutions containing either potassium triiodide or iodine. Measurement of the residual number of gold atoms on the GeNW samples using inductively coupled plasma-mass spectrometry shows that 99% of the gold was removed. Photoemission spectroscopy shows that the germanium surfaces of these samples were not further oxidized after treatment with these liquid etchants. Auger electron spectroscopy shows that AuNPs that did not yield GeNWs contain germanium and also that the addition of gaseous HCl to GeH(4) during GeNW growth increased the selectivity of germanium deposition to the AuNPs.
RESUMO
Analogous to planar heteroepitaxy, misfit dislocation formation and stress-driven surface roughening can relax coherency strains in misfitting core-shell nanowires. The effects of coaxial dimensions on strain relaxation in aligned arrays of Ge-core/Si-shell nanowires are analyzed quantitatively by transmission electron microscopy and synchrotron X-ray diffraction. Relating these results to reported continuum elasticity models for coaxial nanowire heterostructures provides valuable insights into the observed interplay of roughening and dislocation-mediated strain relaxation.
RESUMO
The vapor-liquid-solid mechanism of nanowire (NW) growth requires the presence of a liquid at one end of the wire; however, Au-catalyzed Ge nanowire growth by chemical vapor deposition can occur at approximately 100 degrees C below the bulk Au-Ge eutectic. In this paper, we investigate deep sub-eutectic stability of liquid Au-Ge catalysts on Ge NWs quantitatively, both theoretically and experimentally. We construct a binary Au-Ge phase diagram that is valid at the nanoscale and show that equilibrium arguments, based on capillarity, are inconsistent with stabilization of Au-Ge liquid at deep sub-eutectic temperatures, similar to those used in Ge NW growth. Hot-stage electron microscopy and X-ray diffraction are used to test the predictions of nanoscale phase equilibria. In addition to Ge supersaturation of the Au-Ge liquid droplet, which has recently been invoked as an explanation for deep sub-eutectic Ge NW growth, we find evidence of a substantial kinetic barrier to Au solidification during cooling below the nanoscale Au-Ge eutectic temperature.