Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(21): e2207293, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36811236

RESUMO

Direct focused-ion-beam writing is presented as an enabling technology for realizing functional spin-wave devices of high complexity, and demonstrate its potential by optically-inspired designs. It is shown that ion-beam irradiation changes the characteristics of yttrium iron garnet films on a submicron scale in a highly controlled way, allowing one to engineer the magnonic index of refraction adapted to desired applications. This technique does not physically remove material, and allows rapid fabrication of high-quality architectures of modified magnetization in magnonic media with minimal edge damage (compared to more common removal techniques such as etching or milling). By experimentally showing magnonic versions of a number of optical devices (lenses, gratings, Fourier-domain processors) this technology is envisioned as the gateway to building magnonic computing devices that rival their optical counterparts in their complexity and computational power.

2.
J Chem Phys ; 152(15): 154705, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32321256

RESUMO

The production of solar hydrogen with a silicon based water splitting device is a promising future technology, and silicon-based metal-insulator-semiconductor (MIS) electrodes have been proposed as suitable architectures for efficient photocathodes based on the electronic properties of the MIS structures and the catalytic properties of the metals. In this paper, we demonstrate that the interfaces between the metal and oxide of laterally patterned MIS electrodes may strongly enhance the catalytic activity of the electrode compared to bulk metal surfaces. The employed electrodes consist of well-defined, large-area arrays of gold structures of various mesoscopic sizes embedded in a silicon oxide support on silicon. We demonstrate that the activity of these electrodes for hydrogen evolution reaction (HER) increases with an increase in gold/silicon oxide boundary length in both acidic and alkaline media, although the enhancement of the HER rate in alkaline electrolytes is considerably larger than in acidic electrolytes. Electrodes with the largest interfacial length of gold/silicon oxide exhibited a 10-times larger HER rate in alkaline electrolytes than those with the smallest interfacial length. The data suggest that at the metal/silicon oxide boundaries, alkaline HER is enhanced through a bifunctional mechanism, which we tentatively relate to the laterally structured electrode geometry and to positive charges present in silicon oxide: Both properties change locally the interfacial electric field at the gold/silicon oxide boundary, which, in turn, facilitates a faster transport of hydroxide ions away from the electrode/electrolyte interface in alkaline solution. This mechanism boosts the alkaline HER activity of p-type silicon based photoelectrodes close to their HER activity in acidic electrolytes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA