Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 30(36): 365201, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31151121

RESUMO

We report on the low cost and low temperature chemical synthesis of p-type nickel oxide (NiO) and n-type reduced graphene oxide (rGO) and their integration onto ITO/glass substrate to form p-NiO/n-rGO heterojunction for possible self-powered ultraviolet (UV) photodetector applications. Different spectroscopies and microscopes were employed to study their microstructural and surface properties. Whereas, the electrical characterizations have been performed on the devices to ascertain the responsivity, detectivity, external quantum efficiency and temporal responses under dark and UV illumination. It is noteworthy that rGO has not only been used as an n-type semiconductor, but also acted as an electron transport layer, which satisfactorily separates out the electrons from the generated carrier pairs, leading to enhanced photoresponse. Furthermore, efforts were also consecrated to synthesize Ag nanoparticles (NPs) of ∼5 nm radius. The integration of Ag NPs on the conventional NiO/rGO heterojunction facilitates an improved UV light absorption property. It was understood that the performance improvement was owed to the local surface plasmon resonance of Ag NPs within the active layer of NiO. Surprisingly, both the devices (with and without Ag NPs) exhibit photovoltaic behavior which shows its potential for self-powered device application. When the Ag NPs embedded device is concerned, it showed better on/off ratio (6.3 × 103), high responsivity (72 mAW-1), large detectivity (3.95 × 1012 Jones), and high efficiency (24.46%) as compared to the conventional NiO/rGO heterojunction one (without Ag NPs). The variation in the photoresponse and improved charge transport was explained through a band-diagram, which also showcases a comprehensive understanding on the operational principle of the fabricated self-powered devices. Thus, this self-powered photodetector driven by built in electric field is operated independently and can be attached with any other electronic gadgets for internet of things applications.

2.
Nanotechnology ; 29(35): 355401, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-29808826

RESUMO

The sensitive nature of molecular hydrogen (H2) interaction with the surfaces of pristine and functionalized nanostructures, especially two-dimensional materials, has been a subject of debate for a while now. An accurate approximation of the H2 adsorption mechanism has vital significance for fields such as H2 storage applications. Owing to the importance of this issue, we have performed a comprehensive density functional theory (DFT) study by means of several different approximations to investigate the structural, electronic, charge transfer and energy storage properties of pristine and functionalized graphdiyne (GDY) nanosheets. The dopants considered here include the light metals Li, Na, K, Ca, Sc and Ti, which have a uniform distribution over GDY even at high doping concentration due to their strong binding and charge transfer mechanism. Upon 11% of metal functionalization, GDY changes into a metallic state from being a small band-gap semiconductor. Such situations turn the dopants to a partial positive state, which is favorable for adsorption of H2 molecules. The adsorption mechanism of H2 on GDY has been studied and compared by different methods like generalized gradient approximation, van der Waals density functional and DFT-D3 functionals. It has been established that each functionalized system anchors multiple H2 molecules with adsorption energies that fall into a suitable range regardless of the functional used for approximations. A significantly high H2 storage capacity would guarantee that light metal-doped GDY nanosheets could serve as efficient and reversible H2 storage materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA