Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36014319

RESUMO

Optical quality cm-sized LiInSe2 crystals were grown using the Bridgman-Stockbarger method, starting from pure element reagents, under the conditions of a low temperature gradient of 5-6 degrees/cm and a slight melt overheating. The phase purity of the grown crystal was verified by the powder XRD analysis. The thermophysical characteristics of LiInSe2 were determined by the XRD measurements in the temperature range of 303-703 K and strong anisotropy of the thermal expansion coefficients was established. The following values of thermal expansion coefficients were determined in LiInSe2: αa = 8.1 (1), αb = 16.1 (2) and αc = 5.64 (6) MK-1. The electronic structure of LiInSe2 was measured by X-ray photoelectron spectroscopy. The band structure of LiInSe2 was calculated by ab initio methods.

2.
Inorg Chem ; 55(17): 8672-80, 2016 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-27529433

RESUMO

Large single crystals of LiGaGe2Se6 were grown, and their structure and linear optical properties were studied. According to XRD results there is some disorder because of the Li ion fluctuation and their redistribution along two cationic sites. The shape of the fundamental absorption edge versus temperature was analyzed, and direct band gap values were estimated from the Tauc plots. Raman spectra were recorded and compared with results of ab initio calculations. The high quality of LiGaGe2Se6 crystals is confirmed by signals from free and self-trapped excitons. Photoluminescence in the 696 nm broad band and a set of bands in the 950 to 1100 nm range are related to self-trapped excitons and cation antisite defects, respectively. The luminescence intensity increases two orders as the crystal is cooled to 80 K. Four peaks are observed in the thermoluminescence curves with dominant ones at 218 and 410 K. Pyroelectric luminescence in the 100 to 180 K range confirms the noncentrosymmetric structure of this crystal.

3.
Phys Chem Chem Phys ; 17(1): 500-8, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25406970

RESUMO

SrMgF4 has an extremely large bandgap Eg of 12.50 eV as obtained from reflection dispersion. The symmetry of this crystal is monoclinic P21 at room temperature and transforms to the orthorhombic Cmc21 phase near 478 K as the temperature increases. The acentric character of the low-temperature (LT) phase is confirmed by pyroelectric luminescence at T < 440 K. The fundamental absorption edge of the LT phase is located at 122 nm (10.15 eV). A considerable difference between the absorption edge and bandgap Eg is due to the strong exciton absorption. The first-principles electronic structure, refractive indices, nonlinear susceptibility and polarizability were calculated for both LT and high-temperature (HT) phases. Band-to-band transitions are direct for the LT phase but indirect for HT. In spite of relatively low birefringence (∼0.017) and nonlinear susceptibility (∼0.044 pm V(-1), an order lower than that in KDP), SrMgF4 crystals are considered promising for nonlinear optics thanks to their transparency far in the vacuum ultraviolet spectral region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA