Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
BMC Microbiol ; 22(1): 122, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513812

RESUMO

BACKGROUND: Bradyrhizobium japonicum strain SEMIA 5079 (= CPAC 15) is a nitrogen-fixing symbiont of soybean broadly used in commercial inoculants in Brazil. Its genome has about 50% of hypothetical (HP) protein-coding genes, many in the symbiosis island, raising questions about their putative role on the biological nitrogen fixation (BNF) process. This study aimed to infer functional roles to 15 HP genes localized in the symbiosis island of SEMIA 5079, and to analyze their expression in the presence of a nod-gene inducer. RESULTS: A workflow of bioinformatics tools/databases was established and allowed the functional annotation of the HP genes. Most were enzymes, including transferases in the biosynthetic pathways of cobalamin, amino acids and secondary metabolites that may help in saprophytic ability and stress tolerance, and hydrolases, that may be important for competitiveness, plant infection, and stress tolerance. Putative roles for other enzymes and transporters identified are discussed. Some HP proteins were specific to the genus Bradyrhizobium, others to specific host legumes, and the analysis of orthologues helped to predict roles in BNF. CONCLUSIONS: All 15 HP genes were induced by genistein and high induction was confirmed in five of them, suggesting major roles in the BNF process.


Assuntos
Bradyrhizobium , Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Genisteína/metabolismo , Genisteína/farmacologia , Ilhas Genômicas , Fixação de Nitrogênio/genética , Glycine max/genética , Simbiose/genética
2.
Microbiology (Reading) ; 165(9): 990-1000, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31184576

RESUMO

Rhizobium tropici strain CIAT 899 possesses outstanding agronomic properties as it displays tolerance to environmental stresses, a broad host range and high effectiveness in fixing nitrogen with the common bean (Phaseolus vulgaris L.); in addition, it carries intriguing features such as five copies of the regulatory nodD gene, and the capacity to synthesize a variety of nodulation factors (NFs), even in a flavonoid-independent manner, when submitted to abiotic stresses. However, the roles of several nod genes of the repertoire of CIAT 899 remain to be determined. In this study, we obtained mutants for the hsnT, nodF and nodE genes of CIAT 899 and investigated their expression, NF structures and symbiotic properties. Either in the presence of the flavonoid apigenin, or of salt the expression of hsnT, nodF and nodE in wild-type CIAT 899 was highly up-regulated in comparison to the mutants of all five copies of nodD, indicating the roles that regulatory nodD genes play in the activation of hsnT, nodF and nodE; however, NodD1 was recognized as the main inducer. In total, 29 different NF structures were synthesized by wild-type CIAT 899 induced by apigenin, and 36 when induced by salt, being drastically reduced by mutations in hsnT, nodF and nodE, especially under osmotic stress, with specific changes related to each gene, indicating that the three genes participate in the synthesis of NFs. Mutations in hsnT, nodF and nodE affected differently symbiotic performance (nodule number and shoot dry weight), according to the host plant. Our results indicate that the expression of hsnT, nodF and nodE genes of CIAT 899 is mediated by nodD genes, and although these three genes do not belong to the main set of genes controlling nodulation, they contribute to the synthesis of NFs that will impact symbiotic performance and host specificity.


Assuntos
Proteínas de Bactérias/genética , Nodulação/genética , Rhizobium tropici/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Fixação de Nitrogênio/fisiologia , Phaseolus/microbiologia , Simbiose/genética
3.
Arch Microbiol ; 201(2): 171-183, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30535938

RESUMO

Rhizobium tropici CIAT 899 is a strain known by its ability to nodulate a broad range of legume species, to synthesize a variety of Nod factors, its tolerance of abiotic stresses, and its high capacity to fix atmospheric N2, especially in symbiosis with common bean (Phaseolus vulgaris L.). Genes putatively related to the synthesis of indole acetic acid (IAA) have been found in the symbiotic plasmid of CIAT 899, in the vicinity of the regulatory nodulation gene nodD5, and, in this study, we obtained mutants for two of these genes, y4wF and tidC (R. tropiciindole-3-pyruvic acid decarboxylase), and investigated their expression in the absence and presence of tryptophan (TRP) and apigenin (API). In general, mutations of both genes increased exopolysaccharide (EPS) synthesis and did not affect swimming or surface motility; mutations also delayed nodule formation, but increased competitiveness. We found that the indole-3-acetamide (IAM) pathway was active in CIAT 899 and not affected by the mutations, and-noteworthy-that API was required to activate the tryptamine (TAM) and the indol-3-pyruvic acid (IPyA) pathways in all strains, particularly in the mutants. High up-regulation of y4wF and tidC genes was observed in both the wild-type and the mutant strains in the presence of API. The results obtained revealed an intriguing relationship between IAA metabolism and nod-gene-inducing activity in R. tropici CIAT 899. We discuss the IAA pathways, and, based on our results, we attribute functions to the y4wF and tidC genes of R. tropici.


Assuntos
Carboxiliases/metabolismo , Ácidos Indolacéticos/metabolismo , Rhizobium tropici/genética , Rhizobium tropici/metabolismo , Carboxiliases/genética , Genes Bacterianos , Indóis/metabolismo , Mutação , Phaseolus/microbiologia , Phaseolus/fisiologia , Polissacarídeos Bacterianos/biossíntese , Rhizobium tropici/química , Rhizobium tropici/enzimologia , Simbiose
4.
BMC Genomics ; 17: 534, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27485828

RESUMO

BACKGROUND: Common bean (Phaseolus vulgaris L.) is the most important legume cropped worldwide for food production and its agronomic performance can be greatly improved if the benefits from symbiotic nitrogen fixation are maximized. The legume is known for its high promiscuity in nodulating with several Rhizobium species, but those belonging to the Rhizobium tropici "group" are the most successful and efficient in fixing nitrogen in tropical acid soils. Rhizobium leucaenae belongs to this group, which is abundant in the Brazilian "Cerrados" soils and frequently submitted to several environmental stresses. Here we present the first high-quality genome drafts of R. leucaenae, including the type strain CFN 299(T) and the very efficient strain CPAO 29.8. Our main objective was to identify features that explain the successful capacity of R. leucaenae in nodulating common bean under stressful environmental conditions. RESULTS: The genomes of R. leucaenae strains CFN 299(T) and CPAO 29.8 were estimated at 6.7-6.8 Mbp; 7015 and 6899 coding sequences (CDS) were predicted, respectively, 6264 of which are common to both strains. The genomes of both strains present a large number of CDS that may confer tolerance of high temperatures, acid soils, salinity and water deficiency. Types I, II, IV-pili, IV and V secretion systems were present in both strains and might help soil and host colonization as well as the symbiotic performance under stressful conditions. The symbiotic plasmid of CPAO 29.8 is highly similar to already described tropici pSyms, including five copies of nodD and three of nodA genes. R. leucaenae CFN 299(T) is capable of synthesizing Nod factors in the absence of flavonoids when submitted to osmotic stress, indicating that under abiotic stress the regulation of nod genes might be different. CONCLUSION: A detailed study of the genes putatively related to stress tolerance in R. leucaenae highlighted an intricate pattern comprising a variety of mechanisms that are probably orchestrated to tolerate the stressful conditions to which the strains are submitted on a daily basis. The capacity to synthesize Nod factors under abiotic stress might follow the same regulatory pathways as in CIAT 899(T) and may help both to improve bacterial survival and to expand host range to guarantee the perpetuation of the symbiosis.


Assuntos
Genes Bacterianos , Genoma Bacteriano , Genômica , Rhizobium/genética , Estresse Fisiológico/genética , Simbiose/genética , Adaptação Biológica/genética , Meio Ambiente , Genômica/métodos , Temperatura Alta , Concentração de Íons de Hidrogênio , Fixação de Nitrogênio/genética , Pressão Osmótica , Estresse Oxidativo/genética , Filogenia , Nodulação/genética , Plasmídeos/genética , Rhizobium/classificação
5.
BMC Genomics ; 16: 864, 2015 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-26502986

RESUMO

BACKGROUND: Transcription of nodulation genes in rhizobial species is orchestrated by the regulatory nodD gene. Rhizobium tropici strain CIAT 899 is an intriguing species in possessing features such as broad host range, high tolerance of abiotic stresses and, especially, by carrying the highest known number of nodD genes--five--and the greatest diversity of Nod factors (lipochitooligosaccharides, LCOs). Here we shed light on the roles of the multiple nodD genes of CIAT 899 by reporting, for the first time, results obtained with nodD3, nodD4 and nodD5 mutants. METHODS: The three nodD mutants were built by insertion of Ω interposon. Nod factors were purified and identified by LC-MS/MS analyses. In addition, nodD1 and nodC relative gene expressions were measured by quantitative RT-PCR in the wt and derivative mutant strains. Phenotypic traits such as exopolysaccharide (EPS), lipopolysaccharide (LPS), swimming and swarming motilities, biofilm formation and indole acetid acid (IAA) production were also perfomed. All these experiments were carried out in presence of both inducers of CIAT 899, apigenin and salt. Finally, nodulation assays were evaluated in up to six different legumes, including common bean (Phaseolus vulgaris L.). RESULTS: Phenotypic and symbiotic properties, Nod factors and gene expression of nodD3, nodD4 and nodD5 mutants were compared with those of the wild-type (WT) CIAT 899, both in the presence and in the absence of the nod-gene-inducing molecule apigenin and of saline stress. No differences between the mutants and the WT were observed in exopolysaccharide (EPS) and lipopolysaccharide (LPS) profiles, motility, indole acetic acid (IAA) synthesis or biofilm production, either in the presence, or in the absence of inducers. Nodulation studies demonstrated the most complex regulatory system described so far, requiring from one (Leucaena leucocephala, Lotus burtii) to four (Lotus japonicus) nodD genes. Up to 38 different structures of Nod factors were detected, being higher under salt stress, except for the nodD5 mutant; in addition, a high number of structures was synthesized by the nodD4 mutant in the absence of any inducer. Probable activator (nodD3 and nodD5) or repressor roles (nodD4), possibly via nodD1 and/or nodD2, were attributed to the three nodD genes. Expression of nodC, nodD1 and each nodD studied by RT-qPCR confirmed that nodD3 is an activator of nodD1, both in the presence of apigenin and salt stress. In contrast, nodD4 might be an inducer with apigenin and a repressor under saline stress, whereas nodD5 was an inducer under both conditions. CONCLUSIONS: We report for R. tropici CIAT 899 the most complex model of regulation of nodulation genes described so far. Five nodD genes performed different roles depending on the host plant and the inducing environment. Nodulation required from one to four nodD genes, depending on the host legume. nodD3 and nodD5 were identified as activators of the nodD1 gene, whereas, for the first time, it was shown that a regulatory nodD gene-nodD4-might act as repressor or inducer, depending on the inducing environment, giving support to the hypothesis that nodD roles go beyond nodulation, in terms of responses to abiotic stresses.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Rhizobium tropici/genética , Rhizobium tropici/metabolismo
6.
BMC Genomics ; 16: 251, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25880529

RESUMO

BACKGROUND: Nodulation and symbiotic nitrogen fixation are mediated by several genes, both of the host legume and of the bacterium. The rhizobial regulatory nodD gene plays a critical role, orchestrating the transcription of the other nodulation genes. Rhizobium tropici strain CIAT 899 is an effective symbiont of several legumes-with an emphasis on common bean (Phaseolus vulgaris)-and is unusual in carrying multiple copies of nodD, the roles of which remain to be elucidated. RESULTS: Phenotypes, Nod factors and gene expression of nodD1 and nodD2 mutants of CIAT 899 were compared with those of the wild type strain, both in the presence and in the absence of the nod-gene-inducing molecules apigenin and salt (NaCl). Differences between the wild type and mutants were observed in swimming motility and IAA (indole acetic acid) synthesis. In the presence of both apigenin and salt, large numbers of Nod factors were detected in CIAT 899, with fewer detected in the mutants. nodC expression was lower in both mutants; differences in nodD1 and nodD2 expression were observed between the wild type and the mutants, with variation according to the inducing molecule, and with a major role of apigenin with nodD1 and of salt with nodD2. In the nodD1 mutant, nodulation was markedly reduced in common bean and abolished in leucaena (Leucaena leucocephala) and siratro (Macroptilium atropurpureum), whereas a mutation in nodD2 reduced nodulation in common bean, but not in the other two legumes. CONCLUSION: Our proposed model considers that full nodulation of common bean by R. tropici requires both nodD1 and nodD2, whereas, in other legume species that might represent the original host, nodD1 plays the major role. In general, nodD2 is an activator of nod-gene transcription, but, in specific conditions, it can slightly repress nodD1. nodD1 and nodD2 play other roles beyond nodulation, such as swimming motility and IAA synthesis.


Assuntos
Proteínas de Bactérias/genética , Fabaceae/microbiologia , Genes Bacterianos , Rhizobium tropici/genética , Apigenina/farmacologia , Proteínas de Bactérias/metabolismo , Fabaceae/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Mutação , Fixação de Nitrogênio/efeitos dos fármacos , Fenótipo , Nodulação/efeitos dos fármacos , Raízes de Plantas/microbiologia , Rhizobium tropici/fisiologia , Cloreto de Sódio/farmacologia , Simbiose/genética
7.
BMC Genomics ; 15: 643, 2014 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-25086822

RESUMO

BACKGROUND: Strain CPAC 7 (=SEMIA 5080) was recently reclassified into the new species Bradyrhizobium diazoefficiens; due to its outstanding efficiency in fixing nitrogen, it has been used in commercial inoculants for application to crops of soybean [Glycine max (L.) Merr.] in Brazil and other South American countries. Although the efficiency of B. diazoefficiens inoculant strains is well recognized, few data on their protein expression are available. RESULTS: We provided a two-dimensional proteomic reference map of CPAC 7 obtained under free-living conditions, with the successful identification of 115 spots, representing 95 different proteins. The results highlighted the expression of molecular determinants potentially related to symbiosis establishment (e.g. inositol monophosphatase, IMPase), fixation of atmospheric nitrogen (N2) (e.g. NifH) and defenses against stresses (e.g. chaperones). By using bioinformatic tools, it was possible to attribute probable functions to ten hypothetical proteins. For another ten proteins classified as "NO related COG" group, we analyzed by RT-qPCR the relative expression of their coding-genes in response to the nodulation-gene inducer genistein. Six of these genes were up-regulated, including blr0227, which may be related to polyhydroxybutyrate (PHB) biosynthesis and competitiveness for nodulation. CONCLUSIONS: The proteomic map contributed to the identification of several proteins of B. diazoefficiens under free-living conditions and our approach-combining bioinformatics and gene-expression assays-resulted in new information about unknown genes that might play important roles in the establishment of the symbiosis with soybean.


Assuntos
Bradyrhizobium/metabolismo , Proteômica/métodos , Simbiose , Proteínas de Bactérias/metabolismo , Bradyrhizobium/efeitos dos fármacos , Bradyrhizobium/genética , Bradyrhizobium/crescimento & desenvolvimento , Biologia Computacional , Eletroforese em Gel Bidimensional , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genisteína/farmacologia , Genoma Bacteriano , Fixação de Nitrogênio , Fases de Leitura Aberta/genética , Estresse Fisiológico
8.
Proteomics ; 12(6): 859-63, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22539436

RESUMO

Rhizobium tropici strain PRF 81 is used in commercial inoculants for common-bean crops in Brazil because of its high efficiency in nitrogen fixation and, as in other strains belonging to this species, its tolerance of environmental stresses, representing a useful biological alternative to chemical nitrogen fertilizers. In this study, a proteomic reference map of PRF 81 was obtained by two-dimensional gel electrophoresis and MALDI-TOF/TOF-TOF mass spectrometry. In total, 115 spots representing 109 different proteins were successfully identified, contributing to a better understanding of the rhizobia-legume symbiosis and supporting, at proteomics level, a strong resemblance with agrobacteria.


Assuntos
Agrobacterium/química , Proteínas de Bactérias/análise , Eletroforese em Gel Bidimensional , Proteômica , Rhizobium tropici/química , Produtos Agrícolas/microbiologia , Proteoma/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Simbiose
9.
BMC Microbiol ; 12: 84, 2012 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-22647150

RESUMO

BACKGROUND: Rhizobium tropici strain PRF 81 (= SEMIA 4080) has been used in commercial inoculants for application to common-bean crops in Brazil since 1998, due to its high efficiency in fixing nitrogen, competitiveness against indigenous rhizobial populations and capacity to adapt to stressful tropical conditions, representing a key alternative to application of N-fertilizers. The objective of our study was to obtain an overview of adaptive responses to heat stress of strain PRF 81, by analyzing differentially expressed proteins when the bacterium is grown at 28°C and 35°C. RESULTS: Two-dimensional gel electrophoresis (2DE) revealed up-regulation of fifty-nine spots that were identified by MALDI-TOF/TOF-TOF. Differentially expressed proteins were associated with the functional COG categories of metabolism, cellular processes and signaling, information storage and processing. Among the up-regulated proteins, we found some related to conserved heat responses, such as molecular chaperones DnaK and GroEL, and other related proteins, such as translation factors EF-Tu, EF-G, EF-Ts and IF2. Interestingly, several oxidative stress-responsive proteins were also up-regulated, and these results reveal the diversity of adaptation mechanisms presented by this thermotolerant strain, suggesting a cross-talk between heat and oxidative stresses. CONCLUSIONS: Our data provide valuable protein-expression information relevant to the ongoing genome sequencing of strain PRF 81, and contributes to our still-poor knowledge of the molecular determinants of the thermotolerance exhibited by R. tropici species.


Assuntos
Proteínas de Bactérias/análise , Proteoma/análise , Rhizobium tropici/química , Rhizobium tropici/fisiologia , Estresse Fisiológico , Eletroforese em Gel Bidimensional , Proteômica , Rhizobium tropici/crescimento & desenvolvimento , Rhizobium tropici/efeitos da radiação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Temperatura
10.
Braz J Microbiol ; 48(1): 9-10, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27818093

RESUMO

Bradyrhizobium embrapense CNPSo 2833T is a nitrogen-fixing symbiont of the legume pasture Desmodium. Its draft genome contains 8,267,832bp and 7876 CDSs. The symbiotic island includes nodulation and nitrogen fixation genes resembling the operon organization of B. japonicum. Several CDSs related to secretion proteins and stress tolerance were also identified.


Assuntos
Bradyrhizobium/genética , Fabaceae/microbiologia , Genoma Bacteriano , Genômica , Nódulos Radiculares de Plantas/microbiologia , Bradyrhizobium/isolamento & purificação , Bradyrhizobium/metabolismo , Biologia Computacional/métodos , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Análise de Sequência de DNA , Simbiose
11.
Genome Announc ; 4(3)2016 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-27198014

RESUMO

Pseudomonas fluorescens ET76 was isolated from rice rhizosphere in northwestern Morocco. Its draft genome was estimated to be 6,681,652 bp with 5,789 coding sequences (CDSs). Genes encoding for type I to VI secretion systems, PvdQ, proteases, siderophores, hydrogen cyanide synthase, ACC-deaminase, among others, highlight its potential use in biological control of plant pathogens.

12.
Genome Announc ; 4(3)2016 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-27365354

RESUMO

Bradyrhizobium stylosanthis BR 446(T) is a nitrogen-fixing symbiont of the tropical legume pasture Stylosanthes guianensis Its draft genome contains 8,801,717 bp and 8,239 coding sequences (CDSs). Several putative genes that might confer high competitiveness and saprophytic capacity under the stressful conditions of tropical soils were identified in the genome.

13.
PLoS One ; 11(4): e0154029, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27096734

RESUMO

The establishment of nitrogen-fixing rhizobium-legume symbioses requires a highly complex cascade of events. In this molecular dialogue the bacterial NodD transcriptional regulators in conjunction with plant inducers, mostly flavonoids, are responsible for the biosynthesis and secretion of Nod factors which are key molecules for successful nodulation. Other transcriptional regulators related to the symbiotic process have been identified in rhizobial genomes, including negative regulators such as NolR. Rhizobium tropici CIAT 899 is an important symbiont of common bean (Phaseolus vulgaris L.), and its genome encompasses intriguing features such as five copies of nodD genes, as well as other possible transcriptional regulators including the NolR protein. Here we describe and characterize a new regulatory gene located in the non-symbiotic plasmid pRtrCIAT899c, that shows homology (46% identity) with the nolR gene located in the chromosome of CIAT 899. The mutation of this gene, named nrcR (nolR-like plasmid c Regulator), enhanced motility and exopolysaccharide production in comparison to the wild-type strain. Interestingly, the number and decoration of Nod Factors produced by this mutant were higher than those detected in the wild-type strain, especially under salinity stress. The nrcR mutant showed delayed nodulation and reduced competitiveness with P. vulgaris, and reduction in nodule number and shoot dry weight in both P. vulgaris and Leucaena leucocephala. Moreover, the mutant exhibited reduced capacity to induce the nodC gene in comparison to the wild-type CIAT 899. The finding of a new nod-gene regulator located in a non-symbiotic plasmid may reveal the existence of even more complex mechanisms of regulation of nodulation genes in R. tropici CIAT 899 that may be applicable to other rhizobial species.


Assuntos
Phaseolus/microbiologia , Raízes de Plantas/microbiologia , Rhizobium tropici/genética , Rhizobium tropici/fisiologia , Simbiose , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Genes Bacterianos , Mutação , Fixação de Nitrogênio , Phaseolus/fisiologia , Raízes de Plantas/fisiologia , Plasmídeos/genética , Ativação Transcricional
14.
Genome Announc ; 3(5)2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26383651

RESUMO

Bradyrhizobium pachyrhizi PAC48(T) has been isolated from a jicama nodule in Costa Rica. The draft genome indicates high similarity with that of Bradyrhizobium elkanii. Several coding sequences (CDSs) of the stress response might help in survival in the tropics. PAC48(T) carries nodD1 and nodK, similar to Bradyrhizobium (Parasponia) ANU 289 and a particular nodD2 gene.

15.
Genome Announc ; 3(5)2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26383667

RESUMO

Rhizobium ecuadorense CNPSo 671(T) was isolated from a common bean nodule in Ecuador. The draft genome brings novelty about indigenous rhizobial species in centers of genetic diversity of the legume.

16.
Genome Announc ; 3(6)2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26679590

RESUMO

SEMIA 690(T) is a nitrogen-fixing symbiont of Centrosema pubescens, and comprises the recently described species Bradyrhizobium viridifuturi. Its draft genome indicates that it belongs to the Bradyrhizobium elkanii superclade. SEMIA 690(T) carries two copies of the regulatory nodD gene, and the nod and nif operons resemble those of Bradyrhizobium diazoefficiens.

17.
Genome Announc ; 3(6)2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26679591

RESUMO

CNPSo 1112(T) is a nitrogen-fixing symbiont of perennial soybean, a tropical legume forage. Its draft genome indicates a large genome with a circular chromosome and 9,554 coding sequences (CDSs). Operons of nodulation, nitrogen fixation, and uptake hydrogenase were present in the symbiotic island, and the genome encompasses several CDSs of stress tolerance.

18.
Braz. j. microbiol ; Braz. j. microbiol;48(1): 9-10, Jan.-Mar. 2017.
Artigo em Inglês | LILACS | ID: biblio-839335

RESUMO

Abstract Bradyrhizobium embrapense CNPSo 2833T is a nitrogen-fixing symbiont of the legume pasture Desmodium. Its draft genome contains 8,267,832 bp and 7876 CDSs. The symbiotic island includes nodulation and nitrogen fixation genes resembling the operon organization of B. japonicum. Several CDSs related to secretion proteins and stress tolerance were also identified.


Assuntos
Genoma Bacteriano , Bradyrhizobium/genética , Genômica , Nódulos Radiculares de Plantas/microbiologia , Fabaceae/microbiologia , Simbiose , Análise de Sequência de DNA , Biologia Computacional/métodos , Bradyrhizobium/isolamento & purificação , Bradyrhizobium/metabolismo , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA