Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Glob Chang Biol ; 29(2): 391-403, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36203244

RESUMO

Approximately half of the global annual production of wastewater is released untreated into aquatic environments, which results in worldwide organic matter pollution in urban rivers, especially in highly populated developing countries. Nonetheless, information on microbial community assembly and assembly-driving processes in organic matter-polluted urban rivers remains elusive. In this study, a field study based on water and sediment samples collected from 200 organic matter-polluted urban rivers of 82 cities in China and Indonesia is combined with laboratory water-sediment column experiments. Our findings demonstrate a unique microbiome in these urban rivers. Among the community assembly-regulating factors, both organic matter and geographic conditions play major roles in determining prokaryotic and eukaryotic community assemblies, especially regarding the critical role of organic matter in regulating taxonomic composition. Using a dissimilarity-overlap approach, we found universality in the dynamics of water and sediment community assembly in organic matter-polluted urban rivers, which is distinctively different from patterns in eutrophic and oligotrophic waters. The prokaryotic and eukaryotic communities are dominated by deterministic and stochastic processes, respectively. Interestingly, water prokaryotic communities showed a three-phase cyclic succession of the community assembly process before, during, and after organic matter pollution. Our study provides the first large-scale and comprehensive insight into the prokaryotic and eukaryotic community assembly in organic matter-polluted urban rivers and supports their future sustainable management.


Assuntos
Microbiota , Rios , Cidades , Água , China
2.
Physiol Plant ; 174(1): e13595, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34766358

RESUMO

Increasing global temperatures could result in decreasing crop production by decreasing seed germination in the field due to thermodormancy acquisition. Certain metals appear to modulate seed thermodormancy, although the exact mechanisms of that effect have not yet been elucidated. We report here the effects of Zn on the thermodormancy of sorghum seeds. Seeds treated with 0 or 200 mg Zn L-1 were germinated at optimal (30°C) and supra-optimal (40°C) temperatures and their germinability and oxidative stress markers were evaluated. The integrative effects of Zn, abscisic acid (ABA), gibberellin (GA), and H2 O2 on the physiology of seed thermodormancy were examined. The supra-optimal germination temperature (40°C) induced seed thermodormancy, which was, however, alleviated by treatment with 200 mg Zn L-1 . Thermodormancy acquired at supra-optimal temperatures in sorghum seeds must reflect de novo synthesis and accumulation of ABA. Although Zn treatment did not prevent ABA accumulation, it increased the activities of mitochondrial ETC enzymes and decreased the antioxidant enzymes' activity, leading to the accumulation of H2 O2 . By increasing mitochondria activity and H2 O2 production, Zn may induce GA synthesis and alleviate thermodormancy in sorghum seeds. The pretreatment of sorghum seeds with Zn may therefore improve seed germination and assure increased crop performance under normal (30°C) or rising (up to 40°C) temperatures.


Assuntos
Giberelinas , Sorghum , Ácido Abscísico/farmacologia , Germinação , Giberelinas/farmacologia , Peróxido de Hidrogênio/farmacologia , Sementes/fisiologia , Zinco/farmacologia
3.
Int J Phytoremediation ; 24(9): 995-1003, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34686072

RESUMO

Water contamination by antibiotics is an emerging global problem, with impacts on both public health and the environment. Erythromycin has been encountered in bodies of water throughout the world, which demands the development of efficient remediation technologies. We investigated the physiological responses and phytoremediation capacity of four species of aquatic macrophytes, two floating (Salvinia molesta and Lemna minor) and two submerged (Myriophyllum aquaticum and Rotala rotundifolia). The plants were exposed to relevant environmental concentrations of erythromycin (0 and 1.7 µg l-1) in artificially contaminated water for seven days. Physiological evaluations evidenced the ability of that antibiotic to promote oxidative events in those plants, such as the activation of antioxidant enzymes (ascorbate peroxidase and/or catalase). S. molesta exposed to erythromycin demonstrated accumulations of hydrogen peroxide and oxidative damage (lipid peroxidation) that was reflected in growth reductions. The erythromycin removal efficiency of floating plants varied from 9 to 12%, while submerged species varied from 31 to 44%. As such, submerged macrophyte species demonstrated the most efficient removal of erythromycin from contaminated waters, and are therefore more indicated for antibiotic phytoremediation projects.


For the very first time, the capacities of floating and submerged plant species used for removing erythromycin from contaminated water were compared. Moreover, plant physiological responses were related to their phytoremediation capacity. Our results promise to have direct impacts on plant and environmental science as well as in toxicology since they will contribute to a better understanding of the effects of antibiotics in plants and indicate species for better performance of phytoremediation programs aiming to reclaim the antibiotic erythromycin.


Assuntos
Araceae , Poluentes Químicos da Água , Antibacterianos , Biodegradação Ambiental , Eritromicina , Plantas , Água , Poluentes Químicos da Água/análise
4.
Ecotoxicol Environ Saf ; 216: 112193, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33831726

RESUMO

The increasing use of antibiotics in animal production has become an emergent environmental problem. The large percentages of applied antibiotic doses eliminated in animal excrement often end up contaminating water resources, which are then used for irrigation - compromising agricultural production and/or food security. Here, we evaluated the effects of crop irrigation with water artificially contaminated by enrofloxacin (10 µg l-1) and its accumulation in soybean, bean, and corn tissues. Grain production was evaluated on the basis of grain dry weight plant-1, while enrofloxacin and ciprofloxacin (its breakdown metabolite) concentrations in plant tissues were evaluated by HPLC after harvesting. Diminished production was observed only in soybean plants irrigated with antibiotic-contaminated water. Enrofloxacin [1.68 ng g fresh weight (FW)-1 to 26.17 µg g FW-1] and ciprofloxacin (8.23 ng g FW-1 to 51.05 ng g FW-1), were found in all of the plant tissues (roots, leaves, and seeds) of the three species. Regardless of the species, the highest enrofloxacin concentrations were observed in their roots, followed by the leaves and seeds, while ciprofloxacin concentrations varied among the different plant tissues of the different species. The presence of enrofloxacin in the water used for irrigating soybeans can result in productivity losses and, as that antibiotic was encountered in plant tissues (leaves and seeds) of all of the three species analyzed that are consumed in the diets of both humans and animals, it can interfere with food security.

5.
Ecotoxicol Environ Saf ; 203: 111025, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888593

RESUMO

We investigated individual and combined effects of environmentally representative concentrations of amoxicillin (AMX; 2 µg l-1), enrofloxacin (ENR; 2 µg l-1), and oxytetracycline (OXY; 1 µg l-1) on the aquatic macrophyte Lemna minor. While the concentrations of AMX and ENR tested were not toxic, OXY decreased plant growth and cell division. OXY induced hydrogen peroxide (H2O2) accumulation and related oxidative stress through its interference with the activities of mitochondria electron transport chain enzymes, although those deleterious effects could be ameliorated by the presence of AMX and/or ENR, which prevented the overaccumulation of ROS by increasing catalase enzyme activity. L. minor plants accumulated significant quantities of AMX, ENR and OXY from the media, although competitive uptakes were observed when plants were submitted to binary or tertiary mixtures of those antibiotics. Our results therefore indicate L. minor as a candidate for phytoremediation of service waters contaminated by AMX, ENR, and/or OXY.


Assuntos
Amoxicilina/toxicidade , Araceae/efeitos dos fármacos , Enrofloxacina/toxicidade , Oxitetraciclina/toxicidade , Fotossíntese/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Amoxicilina/análise , Amoxicilina/metabolismo , Araceae/crescimento & desenvolvimento , Araceae/metabolismo , Biodegradação Ambiental , Catalase/metabolismo , Relação Dose-Resposta a Droga , Interações Medicamentosas , Enrofloxacina/análise , Enrofloxacina/metabolismo , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Oxitetraciclina/análise , Oxitetraciclina/metabolismo , Poluentes Químicos da Água/análise
6.
Ecotoxicol Environ Saf ; 189: 110021, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31830604

RESUMO

The failure of the Fundão dam, the largest environmental disaster in the world's mining sector, was responsible for releasing millions of cubic meters of iron ore tailings into the environment. It affected thousands of hectares of the Atlantic Forest domain, one of the biodiversity hotspots for conservation. Considering the urgency to restore the flora of the affected area, we evaluated the effects that iron ore tailings from the Fundão reservoir have on the germination and initial growth of tree species native to the Atlantic Forest in the Rio Doce basin. We demonstrated that the tailings do not affect the seed germination, but do negatively interfere with plant growth. Lower biomass production, height, leaf area, chlorophyll concentration and photosynthesis as well as high concentration of iron was observed in plants grown in the tailings. Thus, we investigated if these deleterious effects were due to the presence of potentially toxic metals or nutritional deficiency imposed by low fertility of the tailings. We concluded that reduced growth was a result of nutritional limitations due to low nutrient availability, low organic matter content and low cation exchange capacity of the tailings. This conclusion was further supported by the application of fertilization, which reversed the deleterious effect of the waste on the growth of plants, assuring physiological levels of iron and nutrients in the shoot. Thus, this strategy should be considered for in situ recovery projects aiming to improve the performance of native plants.


Assuntos
Solo/química , Árvores/crescimento & desenvolvimento , Biomassa , Recuperação e Remediação Ambiental , Fertilização , Ferro/análise , Ferro/metabolismo , Mineração , Nutrientes/análise , Nutrientes/deficiência , Nutrientes/metabolismo , Floresta Úmida , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Árvores/classificação , Árvores/metabolismo
7.
Ecotoxicol Environ Saf ; 196: 110549, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32251953

RESUMO

Chemicals used to assure agricultural production and the feasibility of planting sites often end up in bodies of water used for crop irrigation. In a pot study, we investigated the consequences associated with the irrigation of maize with water contaminated by ciprofloxacin (Cipro; 0, 0.2, 0.8, 1.4 and 2.0 µg l-1) and/or glyphosate (0, 5, 25 and 50 mg l-1) on yields and food safety. Glyphosate in concentrations ≥25 mg l-1 prevented plant establishment, regardless of Cipro presence. Evaluations made at the V5 stage of plants reveal that Cipro concentrations ≥0.8 µg l-1 and glyphosate decreased photosynthesis and induced changes in leaf anatomy and stem biophysical properties that may contribute to decreased kernel yields. When those chemicals were applied together, kernel yield reductions were accentuated, evidencing their interactive effects. Irrigation with contaminated water resulted in accumulations of Cipro and glyphosate (as well as its metabolite, aminomethylphosphonic acid) in plant tissues. Accumulation of these chemicals in plant tissues such as leaves and kernels is a problem, since they are used to feed animals and humans. Moreover, these chemicals are of potential toxicological concern, principally due to residue accumulations in the food chain. Specially, the antibiotic residue accumulations in maize tissues can assist the induction of antibiotic resistance in dangerous bacteria. Therefore, we point out the urgency of monitoring the quality of water used for crop irrigation to avoid economic and food-quality losses.


Assuntos
Antibacterianos/toxicidade , Ciprofloxacina/toxicidade , Glicina/análogos & derivados , Poluentes Químicos da Água/toxicidade , Zea mays/efeitos dos fármacos , Irrigação Agrícola , Animais , Antibacterianos/farmacocinética , Ciprofloxacina/farmacocinética , Produtos Agrícolas/anatomia & histologia , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/economia , Inocuidade dos Alimentos , Glicina/farmacocinética , Glicina/toxicidade , Humanos , Fotossíntese/efeitos dos fármacos , Folhas de Planta/anatomia & histologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Poluentes Químicos da Água/farmacocinética , Zea mays/anatomia & histologia , Zea mays/metabolismo , Glifosato
8.
Int J Phytoremediation ; 22(13): 1362-1371, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32672473

RESUMO

The synergistic relationship between arbuscular mycorrhizal fungi and plant species may play a key role in phytoremediation of arsenic(As)-contaminated soils. By using modified Leonard jars, we investigated both the distinct and integrative roles of arbuscular mycorrhizal fungi (AMF-Acaulospora scrobiculata) and rhizobia (BH-ICB-A8) isolated from As-contaminated soil on the capacity of Anadenanthera peregrina to reclaim arsenate [As(V)] from soil. AMF inoculation greatly increased plant phosphorous nutrition, as reflected in greater growth, and increased As-concentrations in the roots and shoots. While rhizobia inoculation alone increased nitrogen nutrition it did not promote plant growth or As-uptake. Rhizobia and AMF inoculation together had synergistic effects, however, increasing both the growth and the As-phytoremediation capacity of A. peregrina. Joint inoculation with rhizobia and AMF should therefore be considered a potential technique for rehabilitating As-contaminated areas using A. peregrina.


Assuntos
Fabaceae , Micorrizas , Rhizobium , Poluentes do Solo , Biodegradação Ambiental , Raízes de Plantas/química , Solo , Poluentes do Solo/análise
9.
Pestic Biochem Physiol ; 130: 65-70, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27155486

RESUMO

We used a willow species (Salix miyabeana cultivar SX64) to examine the differential secondary-effects of glyphosate and aminomethylphosphonic acid (AMPA), the principal glyphosate by-product, on chlorophyll metabolism and photosynthesis. Willow plants were treated with different concentrations of glyphosate (equivalent to 0, 1.4, 2.1 and 2.8kgha(-1)) and AMPA (equivalent to 0, 0.28, 1.4 and 2.8kgha(-1)) and evaluations of pigment contents, chlorophyll fluorescence, and oxidative stress markers (hydrogen peroxide content and antioxidant enzyme activities) in leaves were performed after 12h of exposure. We observed that AMPA and glyphosate trigger different mechanisms leading to decreases in chlorophyll content and photosynthesis rates in willow plants. Both chemicals induced ROS accumulation in willow leaves although only glyphosate-induced oxidative damage through lipid peroxidation. By disturbing chlorophyll biosynthesis, AMPA induced decreases in chlorophyll contents, with consequent effects on photosynthesis. With glyphosate, ROS increases were higher than the ROS-sensitive threshold, provoking chlorophyll degradation (as seen by pheophytin accumulation) and invariable decreases in photosynthesis. Peroxide accumulation in both AMPA and glyphosate-treated plants was due to the inhibition of antioxidant enzyme activities. The different effects of glyphosate on chlorophyll contents and photosynthesis as described in the literature may be due to various glyphosate:AMPA ratios in those plants.


Assuntos
Clorofila/metabolismo , Glicina/análogos & derivados , Herbicidas/farmacologia , Organofosfonatos/farmacologia , Fotossíntese/efeitos dos fármacos , Salix/efeitos dos fármacos , Glicina/farmacologia , Isoxazóis , Oxirredução/efeitos dos fármacos , Salix/metabolismo , Tetrazóis , Glifosato
10.
J Hazard Mater ; 470: 134202, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581873

RESUMO

The escalating global concern of antimicrobial resistance poses a significant challenge to public health. This study delved into the occurrence of resistant bacteria and antimicrobial resistance genes in the waters and sediments of urban rivers and correlated this emergence and the heightened use of antimicrobials during the COVID-19 pandemic. Isolating 45 antimicrobial-resistant bacteria across 11 different species, the study identifies prevalent resistance patterns, with ceftriaxone resistance observed in 18 isolates and ciprofloxacin resistance observed in 13 isolates. The detection of extended-spectrum ß-lactamases, carbapenemases, and acquired quinolone resistance genes in all samples underscores the gravity of the situation. Comparison with a pre-pandemic study conducted in the same rivers in 2019 reveals the emergence of previously undetected new resistant species, and the noteworthy presence of new resistant species and alterations in resistance profiles among existing species. Notably, antimicrobial concentrations in rivers increased during the pandemic, contributing significantly to the scenario of antimicrobial resistance observed in these rivers. We underscore the substantial impact of heightened antimicrobial usage during epidemics, such as COVID-19, on resistance in urban rivers. It provides valuable insights into the complex dynamics of antimicrobial resistance in environmental settings and calls for comprehensive approaches to combat this pressing global health issue, safeguarding both public and environmental health.


Assuntos
COVID-19 , Farmacorresistência Bacteriana , Rios , COVID-19/epidemiologia , Brasil/epidemiologia , Humanos , Rios/microbiologia , Antibacterianos/farmacologia , SARS-CoV-2/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Bactérias/genética , Pandemias
11.
Environ Pollut ; 357: 124376, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38897277

RESUMO

We compared the ability of one emergent (Sagittaria montevidensis), two floating (Salvinia minima and Lemna gibba), and one heterophyllous species (Myriophyllum aquaticum) to simultaneously remove sulfamethoxazole, sulfadiazine, ciprofloxacin, enrofloxacin, norfloxacin, levofloxacin, oxytetracycline, tetracycline, doxycycline, azithromycin, amoxicillin, and meropenem from wastewater in a mesocosm-scale constructed wetland over 28 days. Antibiotic concentrations in plants and effluent were analyzed using an LC-MS/MS to assess the removal rates and phytoremediation capacities. M. aquaticum did not effectively mitigate contamination due to poor tolerance and survival in effluent conditions. S. minima and L. gibba demonstrated superior efficiency, reducing the antibiotic concentrations to undetectable levels within 14 days, while S. montevidensis achieved this result by day 28. Floating macrophytes emerge as the preferable choice for remediation of antibiotics compared to emergent and heterophyllous species. Antibiotics were detected in plant tissues at concentrations ranging from 0.32 to 29.32 ng g-1 fresh weight, highlighting macrophytes' ability to uptake and accumulate these contaminants. Conversely, non-planted systems exhibited a maximum removal rate of 65%, underscoring the persistence of these molecules in natural environments, even after the entire experimental period. Additionally, macrophytes improved effluent quality regardless of species by reducing total soluble solids and phosphate concentrations and mitigating ecotoxicological effects. This study underscores the potential of using macrophytes in wastewater treatment plants to enhance overall efficiency and prevent environmental contamination by antibiotics, thereby mitigating the harmful impact on biota and antibiotic resistance. Selecting appropriate plant species is crucial for successful phytoremediation in constructed wetlands, and actual implementation is essential to validate their effectiveness and practical applicability.

12.
Environ Sci Pollut Res Int ; 30(1): 622-639, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35904744

RESUMO

Ciprofloxacin (Cipro) water contamination is a global concern, having reached disturbing concentrations and threatening the aquatic ecosystems. We investigated the physiological responses and Cipro-phytoremediation capacity of one floating (Salvinia molesta D.S. Mitchell) and one submerged (Egeria densa Planch.) species of aquatic macrophytes. The plants were exposed to increased concentrations of Cipro (0, 1, 10, and 100 µg.Cipro.L-1) in artificially contaminated water for 96 and 168 h. Although the antibiotic affected the activities of mitochondrial electron transport chain enzymes, the resulting increases in H2O2 concentrations were not associated with oxidative damage or growth reductions, mainly due to the activation of antioxidant systems for both species. In addition to being tolerant to Cipro, after only 96 h, plants were able to reclaim more than 58% of that from the media. The phytoremediation capacity did not differ between the species, however, while S. molesta bioaccumulate, E. densa appears to metabolize Cipro in their tissues. Both macrophytes are indicated for Cipro-phytoremediation projects.


Assuntos
Ciprofloxacina , Ecossistema , Ciprofloxacina/metabolismo , Biodegradação Ambiental , Peróxido de Hidrogênio/metabolismo , Plantas/metabolismo , Água/metabolismo
13.
Sci Total Environ ; 892: 164309, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37236443

RESUMO

Water contamination by pharmaceuticals is a global concern due to their potential negative effects on aquatic ecosystems and human health. This study examined the presence of three repositioned drugs used for COVID-19 treatment: azithromycin (AZI), ivermectin (IVE) and hydroxychloroquine (HCQ) in water samples collected from three urban rivers in Curitiba, Brazil, during August and September 2020. We conducted a risk assessment and evaluated the individual (0, 2, 4, 20, 100 and 200 µg.L-1) and combined (mix of the drugs at 2 µg.L-1) effects of the antimicrobials on the cyanobacterium Synechococcus elongatus and microalga Chlorella vulgaris. The liquid chromatography coupled to mass spectrometry results showed that AZI and IVE were present in all collected samples, while HCQ occurred in 78 % of them. In all the studied sites, the concentrations found of AZI (up to 2.85 µg.L-1) and HCQ (up to 2.97 µg.L-1) represent environmental risks for the studied species, while IVE (up to 3.2 µg.L-1) was a risk only for Chlorella vulgaris. The hazard quotients (HQ) indices demonstrated that the microalga was less sensitive to the drugs than the cyanobacteria. HCQ and IVE had the highest values of HQ for the cyanobacteria and microalga, respectively, being the most toxic drugs for each species. Interactive effects of drugs were observed on growth, photosynthesis and antioxidant activity. The treatment with AZI + IVE resulted in cyanobacteria death, while exposure to the mixture of all three drugs led to decreased growth and photosynthesis in the cells. On the other hand, no effect on growth was observed for C. vulgaris, although photosynthesis has been negatively affected by all treatments. The use of AZI, IVE and HCQ for COVID-19 treatment may have generated surface water contamination, which could increased their potential ecotoxicological effects. This raises the need to further investigation into their effects on aquatic ecosystems.


Assuntos
COVID-19 , Chlorella vulgaris , Microalgas , Poluentes Químicos da Água , Humanos , Ecossistema , Tratamento Farmacológico da COVID-19 , Hidroxicloroquina/análise , Hidroxicloroquina/farmacologia , Azitromicina/toxicidade , Preparações Farmacêuticas , Água , Poluentes Químicos da Água/análise
14.
Environ Sci Pollut Res Int ; 30(43): 97253-97266, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37587399

RESUMO

Enrofloxacin (Enro) has been widely encountered in natural water sources, and that water is often used for irrigation in crop production systems. Due to its phytotoxicity and accumulation in plant tissues, the presence of Enro in water used for crop irrigation may represent economical and toxicological concerns. Here, we irrigated two ornamental plant species (Zantedeschia rehmannii Engl. and Spathiphyllum wallisii Regel.) with water artificially contaminated with the antimicrobial enrofloxacin (Enro; 0, 5, 10, 100, and 1000 µg L-1) to evaluate its effects on ornamental plant production, as well as its accumulation and distribution among different plant organs (roots, leaves, bulbs, and flower stems), and examined the economic and environmental safety of commercializing plants produced under conditions of pharmaceutical contamination. The presence of Enro in irrigation water was not found to disrupt plant growth (biomass) or flower production. Both species accumulated Enro, with its internal concentrations distributed as the following: roots > leaves > bulbs > flower stems. In addition to plant tolerance, the content of Enro in plant organs indicated that both Z. rehmannii and S. wallisii could be safety produced under Enro-contaminated conditions and would not significantly contribute to contaminant transfer. The high capacity of those plants to accumulate Enro in their tissues, associated with their tolerance to it, indicates them for use in Enro-phytoremediation programs.


Assuntos
Irrigação Agrícola , Biodegradação Ambiental , Enrofloxacina , Poluição Química da Água , Araceae/metabolismo , Enrofloxacina/metabolismo , Enrofloxacina/toxicidade
15.
Environ Pollut ; 329: 121672, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37080511

RESUMO

We investigated physiological responses of Lemna minor plants and their capacity to remove tenofovir (TNF; 412 ng l-1), lamivudine (LMV; 5428 ng l-1) and/or efavirenz (EFV; 4000 ng l-1) from water through phytoremediation. In addition, the toxicological safety of water contaminated with these drugs after treatment with L. minor plants to photosynthetic microorganisms (Synechococcus elongatus and Chlorococcum infusionum) was evaluated. The tested environmental representative concentrations of drugs did not have a toxic effect on L. minor, and their tolerance mechanisms involved an increase in the activity of P450 and antioxidant enzymes (catalase and ascorbate peroxidase). L. minor accumulated significant quantities of TNF, LMV and EFV from the media (>70%), and the interactive effect of LMV and EFV increased EFV uptake by plants submitted to binary or tertiary mixture of drugs. Photosynthetic microorganisms exposed to TNF + LMV + EFV showed toxicological symptoms which were not observed when exposed to contaminated water previously treated with L. minor. An increased H2O2 concentrations but no oxidative damage in S. elongatus cells exposed to non-contaminated water treated with L. minor was observed. Due to its capacity to tolerate and reclaim anti-HIV drugs, L. minor plants must be considered in phytoremediation programs. They constitute a natural-based solution to decrease environmental contamination by anti-HIV drugs and toxicological effects of these pharmaceuticals to nontarget organisms.


Assuntos
Fármacos Anti-HIV , Araceae , Poluentes Químicos da Água , Fármacos Anti-HIV/farmacologia , Biodegradação Ambiental , Peróxido de Hidrogênio/farmacologia , Preparações Farmacêuticas , Água , Poluentes Químicos da Água/análise
16.
Environ Sci Pollut Res Int ; 30(14): 41848-41863, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36639588

RESUMO

Phytoremediation has been a potential solution for the removal of pharmaceuticals from water. Here, we evaluated the toxicological safety of ciprofloxacin-contaminated water treated by 96 h with Salvinia molesta. The Neotropical catfish Rhamdia quelen was used as a model, and the potential of the phytoremediation technique for mitigating the drug accumulation in the fishes was also studied. Fish exposed to Cipro (1 and 10 µg·L-1) in untreated water showed toxic responses (alteration of hematological, genotoxicity, biochemical, and histopathological biomarkers) and accumulated Cipro in their muscles at concentrations high for human consumption (target hazardous quotient > 1). Fish exposed to water treated with S. molesta showed no toxic effect and no accumulation of Cipro in their tissues. This must be related to the fact that S. molesta removed up to 97% of Cipro from the water. The decrease in Cipro concentrations after water treatment with S. molesta not only prevented the toxic effects of Cipro on R. quelen fish but also prevented the antimicrobial accumulation in fish flesh, favouring safe consumption by humans. For the very first time, we showed the potential of phytoremediation as an efficiently nature-based solution to prevent environmental toxicological effects of antimicrobials to nontarget organisms such as fish and humans. The use of S. molesta for Cipro-removal from water is a green technology to be considered in the combat against antimicrobial resistance.


Assuntos
Peixes-Gato , Traqueófitas , Poluentes Químicos da Água , Animais , Humanos , Ciprofloxacina , Biodegradação Ambiental , Peixes-Gato/fisiologia , Poluentes Químicos da Água/análise
17.
Chemosphere ; 313: 137387, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36436576

RESUMO

Alkylphenols ethoxylates are industrial surfactants, and the release in the environmental matrices produces degraded products, of which nonylphenol (NP) and octylphenol (OP) were the most common. They can be classified as endocrine disruptors since the estrogenic potential is widely recognized, but some others toxic aspects are in discussion. This study aimed to evaluate the toxicity of NP, OP, and mixtures of both through cellular, biochemical and genetic biomarkers in fish gonadal cell line RTG-2 exposed to nominal concentrations of 0.05; 0.5; 5; 50, and 100 µg mL-1 of each chemical and their mixtures of 0.05, 0.5; 5 µg mL-1 concentrations. After 24 h, the cells were collected for cytotoxic (neutral red - NR; crystal violet - CV, resazurin assay - RA and lactate-dehydrogenase - LDH), antioxidant system (glutathione-s-transferase - GST; superoxide-dismutase - SOD; glutathione-peroxidase - GPx and malondialdehyde - MDA) and genotoxic assays (alkaline comet assay and Fpg-modified alkaline comet assay). The chemicals and their mixtures were cytotoxic at 50 and 100 µg mL-1, in general aspect, but LDH showed cytotoxicity since 0.05 µg mL-1. The GST and SOD showed an activity increase trend in most tested groups, while GPx decreased at 5 µg mL-1 of the mixture. The MDA increase in all groups resulted in lipid peroxidation. The reactive oxygen species caused DNA damage for all groups. The tested chemicals and concentrations have been found in the freshwater systems. They can induce cell toxicity in several parameters that could impair the gonadal tissues considering the RTG-2 responses.


Assuntos
Antioxidantes , Estresse Oxidativo , Animais , Catalase/metabolismo , Antioxidantes/metabolismo , Dano ao DNA , Superóxido Dismutase/metabolismo , Peroxidação de Lipídeos , Glutationa/metabolismo , Linhagem Celular , Glutationa Peroxidase/metabolismo
18.
Environ Sci Pollut Res Int ; 30(5): 12348-12361, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36109480

RESUMO

We evaluated the individual and combined effects of different environmentally representative concentrations of glyphosate (0, 25, 50, 75, and 100 µg l-1) and aminomethylphosphonic acid (AMPA; 0, 12.5, 25, 37.5, and 50 µg l-1) on the physiology of Aedes aegypti larvae, as well as the capacity of the aquatic macrophyte Salvinia molesta to attenuate those compounds' toxicological effects. Larvae of Ae. aegypti (between the third and fourth larval stages) were exposed for 48 h to glyphosate and/or AMPA in the presence or absence of S. molesta. Glyphosate and AMPA induced sublethal responses in Ae. aegypti larvae during acute exposures. Plants removed up to 49% of the glyphosate and 25% of AMPA from the water, resulting in the exposure of larvae to lower concentration of those compounds in relation to media without plants. As a result, lesser effects of glyphosate and/or AMPA were observed on larval acetylcholinesterase, P450 reductase, superoxide dismutase, mitochondrial electron transport chain enzymes, respiration rates, and lipid peroxidation. In addition to evidence of deleterious effects by media contamination with glyphosate and AMPA on aquatic invertebrates, our results attest to the ability of S. molesta plants to mitigate the toxicological impacts of those contaminants.


Assuntos
Herbicidas , Traqueófitas , Animais , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia , Herbicidas/toxicidade , Acetilcolinesterase , Invertebrados , Larva , Glifosato
19.
Antioxidants (Basel) ; 11(1)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35052655

RESUMO

We investigated the individual and combined contributions of two distinct heme proteins namely, ascorbate peroxidase (APX) and catalase (CAT) on the tolerance of Lemna minor plants to antibiotics. For our investigation, we used specific inhibitors of these two H2O2-scavenging enzymes (p-aminophenol, 3-amino,1,2,4-triazole, and salicylic acid). APX activity was central for the tolerance of this aquatic plant to amoxicillin (AMX), whereas CAT activity was important for avoiding oxidative damage when exposed to ciprofloxacin (CIP). Both monitored enzymes had important roles in the tolerance of Lemna minor to erythromycin (ERY). The use of molecular kinetic approaches to detect and increase APX and/or CAT scavenging activities could enhance tolerance, and, therefore, improve the use of L. minor plants to reclaim antibiotics from water bodies.

20.
Environ Sci Pollut Res Int ; 29(12): 18047-18062, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34686954

RESUMO

The rupture of Fundão dam was the biggest environmental disaster of the worlds' mining industry, dumping tons of iron ore tailings into the environment. Studies have shown that the Fundão dam's tailings are poor in nutrients and have high Fe and Mn concentration. In this context, our objective was to evaluate the growth performance of two native tree species (Bowdichia virgilioides and Dictyoloma vandellianum) in two treatments: fertilized soil and fertilized tailings. We hypothesize that the high concentrations of iron and manganese in the tailings can impair the growth performance of plants by interfering with the absorption of nutrients made available through fertilization. Soil and tailings samples were collected in the municipality of Barra Longa (MG, Brazil), and then fertilized with mixed mineral fertilizer ("Osmocote Plus 15-9-12" at 7.5 g L-1). The experiment was conducted for 75 days in a greenhouse using 180 cm3 tubes. We evaluate chlorophyll content, maximal PSII quantum yield, root length, shoot length, root:shoot ratio, leaf area, specific leaf area and leaf area ratio, dry mass, macro- and micronutrients concentration in the tissues, and metal translocation factor. Although assuring the adequate levels of the main nutrients to plant growth (N, P, K, Ca, and Mg), the fertilization did not reverse the negative effect of tailing on these species. The high concentration of Fe in the tissues associated with less biomass production, lower plant height, smaller leaf area, bigger specific leaf area, and reduced chlorophyll content indicates a probable phytotoxic effect of iron present in the tailings for D. vandellianum. Our results base further field evaluations and longer experiments, which will facilitate the understanding of the performance of tree species submitted to tailings with fertilization. So far, this study suggests that B. virgilioides are more tolerant to excess Fe from the tailings of Fundão dam than D. vandellianum.


Assuntos
Poluentes do Solo , Brasil , Fertilização , Ferro , Minerais , Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA