Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Oral Dis ; 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38764359

RESUMO

OBJECTIVE: Hypertension disrupts the bone integrity and its repair ability. This study explores the efficiency of a therapy based on the application of mesenchymal stem cells (MSCs) to repair bone defects of spontaneously hypertensive rats (SHR). METHODS: First, we evaluated SHR in terms of bone morphometry and differentiation of MSCs into osteoblasts. Then, the effects of the interactions between MSCs from normotensive rats (NTR-MSCs) cocultured with SHR (SHR-MSCs) on the osteoblast differentiation of both cell populations were evaluated. Also, bone formation into calvarial defects of SHR treated with NTR-MSCs was analyzed. RESULTS: Hypertension induced bone loss evidenced by reduced bone morphometric parameters of femurs of SHR compared with NTR as well as decreased osteoblast differentiation of SHR-MSCs compared with NTR-MSCs. NTR-MSCs partially restored the capacity of SHR-MSCs to differentiate into osteoblasts, while SHR-MSCs exhibited a slight negative effect on NTR-MSCs. An enhanced bone repair was observed in defects treated with NTR-MSCs compared with control, stressing this cell therapy efficacy even in bones damaged by hypertension. CONCLUSION: The use of MSCs derived from a heathy environment can be in the near future a smart approach to treat bone loss in the context of regenerative dentistry for oral rehabilitation of hypertensive patients.

2.
Life Sci ; 340: 122463, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38286209

RESUMO

AIMS: Cell therapy utilizing mesenchymal stem cells (MSCs) from healthy donors (HE-MSCs) is a promising strategy for treating osteoporotic bone defects. This study investigated the effects of interaction between HE-MSCs and MSCs from osteoporotic donors (ORX-MSCs) on osteoblast differentiation of MSCs and of HE-MSCs on bone formation in calvarial defects of osteoporotic rats. MATERIALS AND METHODS: Osteoporosis was induced by orchiectomy (ORX) and its effects on the bone were evaluated by femur microtomography (µCT) and osteoblast differentiation of bone marrow MSCs. HE- and ORX-MSCs were cocultured, and osteoblast differentiation was evaluated using genotypic and phenotypic parameters. HE-MSCs were injected into the calvarial defects of osteoporotic rats, and bone formation was evaluated by µCT, histology, and gene expression of osteoblast markers. KEY FINDINGS: ORX-induced osteoporosis was revealed by reduced bone morphometric parameters and osteoblast differentiation in ORX-MSCs. HE-MSCs partially recovered the osteogenic potential of ORX-MSCs, whereas HE-MSCs were mildly affected by ORX-MSCs. Additionally, the bone morphogenetic protein and wingless-related integration site signaling pathway components were similarly modulated in cocultures involving ORX-MSCs. HE-MSCs induced meaningful bone formation, highlighting the effectiveness of cell therapy even in osteoporotic bones. SIGNIFICANCE: These results provide new perspectives on the development of cell-based therapies to regenerate bone defects in patients with disorders that affect bone tissue.


Assuntos
Células-Tronco Mesenquimais , Osteoporose , Humanos , Ratos , Animais , Osteogênese , Osso e Ossos/metabolismo , Diferenciação Celular/genética , Osteoporose/metabolismo , Osteoblastos/metabolismo , Células Cultivadas
3.
Biology (Basel) ; 13(7)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39056719

RESUMO

Therapies to prevent osteoporosis are relevant since it is one of the most common non-communicable human diseases in the world and the most prevalent bone disorder in adults. Since jaboticaba peel extract (JPE) added to the culture medium enhanced the osteogenic potential of mesenchymal stem cells (MSCs) derived from osteoporotic rats, we hypothesized that JPE prevents the development of ovariectomy-induced osteoporosis. Ovariectomized rats were treated with either JPE (30 mg/kg of body weight) or its vehicle for 90 days, starting 7 days after the ovariectomy. Then, the femurs were subjected to microcomputed tomography and histological analyses, and the osteoblast and adipocyte differentiation of MSCs was evaluated. JPE attenuated ovariectomy-induced bone loss, as evidenced by higher bone volume/total volume and trabecular number, along with lower trabecular separation and bone marrow adiposity. These protective effects of JPE on bone tissue are due to its ability to prevent the imbalance between osteoblast and adipocyte differentiation of MSCs, since, compared with MSCs derived from ovariectomized rats treated with vehicle, MSCs treated with JPE exhibited higher gene and protein expression of osteogenic markers and extracellular matrix mineralization, as well as lower gene expression of adipogenic markers. These data highlight the potential therapeutic use of JPE to prevent osteoporosis.

4.
J Funct Biomater ; 14(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37367270

RESUMO

BACKGROUND: Tissue engineering and cell therapy have been the focus of investigations on how to treat challenging bone defects. This study aimed to produce and characterize a P(VDF-TrFE)/BaTiO3 scaffold and evaluate the effect of mesenchymal stem cells (MSCs) combined with this scaffold and photobiomodulation (PBM) on bone repair. METHODS AND RESULTS: P(VDF-TrFE)/BaTiO3 was synthesized using an electrospinning technique and presented physical and chemical properties suitable for bone tissue engineering. This scaffold was implanted in rat calvarial defects (unilateral, 5 mm in diameter) and, 2 weeks post-implantation, MSCs were locally injected into these defects (n = 12/group). Photobiomodulation was then applied immediately, and again 48 and 96 h post-injection. The µCT and histological analyses showed an increment in bone formation, which exhibited a positive correlation with the treatments combined with the scaffold, with MSCs and PBM inducing more bone repair, followed by the scaffold combined with PBM, the scaffold combined with MSCs, and finally the scaffold alone (ANOVA, p ≤ 0.05). CONCLUSIONS: The P(VDF-TrFE)/BaTiO3 scaffold acted synergistically with MSCs and PBM to induce bone repair in rat calvarial defects. These findings emphasize the need to combine a range of techniques to regenerate large bone defects and provide avenues for further investigations on innovative tissue engineering approaches.

5.
Biomimetics (Basel) ; 7(3)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36134940

RESUMO

This study evaluates the effects of the availability of exogenous BMP-7 on osteoblastic cells' differentiation on a nanotextured Ti surface obtained by chemical etching (Nano-Ti). The MC3T3-E1 and UMR-106 osteoblastic cell lines were cultured for 5 and 7 days, respectively, on a Nano-Ti surface and on a control surface (Control-Ti) in an osteogenic medium supplemented with either 40 or 200 ng/mL recombinant mouse (rm) BMP-7. The results showed that MC3T3-E1 cells exhibited distinct responsiveness when exposed to each of the two rmBMP-7 concentrations, irrespective of the surface. Even with 40 ng/mL rmBMP-7, important osteogenic effects were noticed for Control-Ti in terms of cell proliferation potential; Runx2, Osx, Alp, Bsp, Opn, and Smad1 mRNA expression; and in situ ALP activity. For Nano-Ti, the effects were limited to higher Alp, Bsp, and Opn mRNA expression and in situ ALP activity. On both surfaces, the osteogenic potential of UMR-106 cultures remained unaltered with 40 ng/mL rmBMP-7, but it was significantly reduced when the cultures were exposed to the 200 ng/mL concentration. The availability of rmBMP-7 to pre-osteoblastic cells at the concentrations used alters the expression profile of osteoblast markers, indicative of the acquisition of a more advanced stage of osteoblastic differentiation. This occurs less pronouncedly on the nanotextured Ti and without reflecting in higher mineralized matrix production by differentiated osteoblasts on both surfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA