Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Nucleic Acids Res ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38908025

RESUMO

i-Motifs (iMs) are non-canonical, four-stranded secondary structures formed by stacking of hemi-protonated CH+·C base pairs in cytosine-rich DNA sequences, predominantly at pH < 7. The presence of iM structures in cells was a matter of debate until the recent development of iM-specific antibody, iMab, which was instrumental for several studies that suggested the existence of iMs in live cells and their putative biological roles. We assessed the interaction of iMab with cytosine-rich oligonucleotides by biolayer interferometry (BLI), pull-down assay and bulk-FRET experiments. Our results suggest that binding of iMab to DNA oligonucleotides is governed by the presence of runs of at least two consecutive cytosines and is generally increased in acidic conditions, irrespectively of the capacity of the sequence to adopt, or not, an iM structure. Moreover, the results of the bulk-FRET assay indicate that interaction with iMab results in unfolding of iM structures even in acidic conditions, similarly to what has been observed with hnRNP K, well-studied single-stranded DNA binding protein. Taken together, our results strongly suggest that iMab actually binds to blocks of 2-3 cytosines in single-stranded DNA, and call for more careful interpretation of results obtained with this antibody.

2.
Nucleic Acids Res ; 47(15): 7901-7913, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31219592

RESUMO

Guanine-rich DNA strands can fold into non-canonical four-stranded secondary structures named G-quadruplexes (G4). Experimental evidences suggest that G4-DNA surrounding transcription start sites act as cis-regulatory elements by either stimulating or inhibiting gene transcription. Therefore, proteins able to target and regulate specific G4 formation/unfolding are crucial for G4-mediated transcriptional control. Here we present data revealing that CNBP acts in vitro as a G4-unfolding protein over a tetramolecular G4 formed by the TG4T oligonucleotide, as well as over the G4 folded in the promoters of several oncogenes. CNBP depletion in cellulo led to a reduction in the transcription of endogenous KRAS, suggesting a regulatory role of CNBP in relieving the transcriptional abrogation due to G4 formation. CNBP activity was also assayed over the evolutionary conserved G4 enhancing the transcription of NOGGIN (NOG) developmental gene. CNBP unfolded in vitro NOG G4 and experiments performed in cellulo and in vivo in developing zebrafish showed a repressive role of CNBP on the transcription of this gene by G4 unwinding. Our results shed light on the mechanisms underlying CNBP way of action, as well as reinforce the notion about the existence and function of G4s in whole living organisms.


Assuntos
DNA/química , Quadruplex G , Proteínas de Ligação a RNA/genética , Transcrição Gênica , Proteínas de Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , DNA/genética , DNA/metabolismo , Embrião não Mamífero , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas de Ligação a RNA/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
3.
Biochim Biophys Acta Gen Subj ; 1861(5 Pt B): 1382-1388, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28065761

RESUMO

G-quadruplexes (G4) are RNA and DNA secondary structures formed by the stacking of guanine quartets in guanine rich sequences. Quadruplex-prone motifs may be found in key genomic regions such as telomeres, ribosomal DNA, transcriptional activators and regulators or oncogene promoters. A number of proteins involved in various biological processes are able to interact with G4s. Among them, proteins dedicated to nucleic acids unwinding such as WRN, BLM, FANCJ or PIF1, can unfold G4 structures. Mutations of these helicases are linked to genome instability and to increases in cancer risks. Here, we present a high-throughput fluorescence-based reliable, inexpensive and fast assay to study G4/RHAU interaction. RHAU is an RNA helicase known as the major source of G4 resolution in HeLa cells. Our assay allows to monitor the unfolding properties of RHAU towards DNA and RNA quadruplexes in parallel and to screen for the optimal conditions for its activity. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.


Assuntos
RNA Helicases DEAD-box/metabolismo , DNA/metabolismo , Quadruplex G , RNA/metabolismo , RNA Helicases DEAD-box/genética , DNA/química , Ensaios de Triagem em Larga Escala , Humanos , Desnaturação de Ácido Nucleico , Potássio/química , Potássio/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myc/genética , RNA/química , Estabilidade de RNA , Espectrometria de Fluorescência , Relação Estrutura-Atividade , Telômero/química , Telômero/metabolismo , Temperatura
4.
J Biol Inorg Chem ; 20(4): 729-38, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25846142

RESUMO

With the aim of finding selective and biologically active G-quadruplex ligands, modified porphyrin with bulky cationic substituents, meso-5,10,15,20-tetrakis(4-guanidinophenyl)porphyrin tetrahydrochloride, referred to as guanidinium phenyl porphyrin, was prepared. The corresponding nickel(II) and cobalt(III) metallated porphyrins were also synthesized. Interaction with quadruplexes was examined by means of fluorescence resonance energy transfer melting and surface plasmon resonance-based assays: the three compounds proved to bind to G-quadruplex DNA in a similar and highly selective way. Guanidinium phenyl porphyrin and its nickel(II) metallated derivative exhibit moderate cytotoxicity toward cells in culture. Strikingly, the nickel porphyrin derivative was able to displace hPOT1 shelterin protein from telomeres in human cells. Nickel(II) guanidinium phenyl porphyrin, a cationic bulky porphyrin is a powerful specific G-quadruplex DNA ligand. It enters the cells and induces shelterin modification.


Assuntos
Quadruplex G/efeitos dos fármacos , Guanidina/química , Metaloporfirinas/farmacologia , Níquel/química , Porfirinas/química , Proteínas de Ligação a Telômeros/metabolismo , Telômero/efeitos dos fármacos , Sítios de Ligação/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dicroísmo Circular , Cobalto/química , Relação Dose-Resposta a Droga , Transferência Ressonante de Energia de Fluorescência , Humanos , Ligantes , Metaloporfirinas/síntese química , Metaloporfirinas/química , Estrutura Molecular , Transporte Proteico/efeitos dos fármacos , Complexo Shelterina , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície , Células Tumorais Cultivadas
5.
Nucleic Acids Res ; 41(6): 3588-99, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23396447

RESUMO

The triazine derivative 12459 is a potent G-quadruplex ligand that triggers apoptosis or delayed growth arrest, telomere shortening and G-overhang degradation, as a function of its concentration and time exposure to the cells. We have investigated here the DNA damage response induced by 12459 in A549 cells. Submicromolar concentrations of 12459 triggers a delayed Chk1-ATR-mediated DNA damage response associated with a telomeric dysfunction and a G2/M arrest. Surprisingly, increasing concentrations of 12459 leading to cell apoptosis induced a mechanism that bypasses the DNA damage signaling and leads to the dephosphorylation of Chk1 and γ-H2AX. We identified the phosphatase Protein Phosphatase Magnesium dependent 1D/Wild-type P53-Induced Phosphatase (PPM1D/WIP1) as a factor responsible for this dephosphorylation. SiRNA-mediated depletion of PPM1D/WIP1 reactivates the DNA damage signaling by 12459. In addition, PPM1D/WIP1 is activated by reactive oxygen species (ROS) induced by 12459. ROS generated by 12459 are sufficient to trigger an early DNA damage in A549 cells when PPM1D/WIP1 is depleted. However, ROS inactivation by N-acetyl cysteine (NAC) treatment does not change the apoptotic response induced by 12459. Because PPM1D expression was recently reported to modulate the recruitment of DNA repair molecules, our data would suggest a cycle of futile protection against 12459, thus leading to a delayed mechanism of cell death.


Assuntos
Dano ao DNA , Fosfoproteínas Fosfatases/metabolismo , Compostos de Quinolínio/farmacologia , Transdução de Sinais , Triazinas/farmacologia , Apoptose , Linhagem Celular Tumoral , Nucléolo Celular/metabolismo , Senescência Celular , Quinase 1 do Ponto de Checagem , Pontos de Checagem da Fase G2 do Ciclo Celular , Humanos , Proteínas Quinases/metabolismo , Proteína Fosfatase 2C , Espécies Reativas de Oxigênio/metabolismo , Telômero/metabolismo , Proteína Supressora de Tumor p53/metabolismo
6.
EMBO J ; 29(9): 1573-84, 2010 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-20407424

RESUMO

DNA-dependent protein kinase (DNA-PK) is a double-strand breaks repair complex, the subunits of which (KU and DNA-PKcs) are paradoxically present at mammalian telomeres. Telomere fusion has been reported in cells lacking these proteins, raising two questions: how is DNA-PK prevented from initiating classical ligase IV (LIG4)-dependent non-homologous end-joining (C-NHEJ) at telomeres and how is the backup end-joining (EJ) activity (B-NHEJ) that operates at telomeres under conditions of C-NHEJ deficiency controlled? To address these questions, we have investigated EJ using plasmid substrates bearing double-stranded telomeric tracks and human cell extracts with variable C-NHEJ or B-NHEJ activity. We found that (1) TRF2/RAP1 prevents C-NHEJ-mediated end fusion at the initial DNA-PK end binding and activation step and (2) DNA-PK counteracts a potent LIG4-independent EJ mechanism. Thus, telomeres are protected against EJ by a lock with two bolts. These results account for observations with mammalian models and underline the importance of alternative non-classical EJ pathways for telomere fusions in cells.


Assuntos
Reparo do DNA , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , DNA/metabolismo , DNA Ligase Dependente de ATP , DNA Ligases/metabolismo , Instabilidade Genômica , Células HeLa , Humanos , Complexo Shelterina
7.
Inorg Chem ; 53(23): 12519-31, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25383703

RESUMO

A series of nine Ni(II) salophen complexes involving one, two, or three alkyl-imidazolium side-chains was prepared. The lengths of the side-chains were varied from one to three carbons. The crystal structure of one complex revealed a square planar geometry of the nickel ion. Fluorescence resonance energy transfer melting of G-quadruplex structures in the presence of salophen complex were performed. The G-quadruplex DNA structures were stabilized in the presence of the complexes, but a duplex DNA was not. The binding constants of the complexes for parallel and antiparallel G-quadruplex DNA, as well as hairpin DNA, were measured by surface plasmon resonance. The compounds were selective for G-quadruplex DNA, as reflected by equilibrium dissociation constant KD values in the region 0.1-1 µM for G-quadruplexes and greater than 2 µM for duplex DNA. Complexes with more and shorter side-chains had the highest binding constants. The structural basis for the interaction of the complexes with the human telomeric G-quadruplex DNA was investigated by computational studies: the aromatic core of the complex stacked over the last tetrad of the G-quadruplex with peripherical cationic side chains inserted into opposite grooves. Biochemical studies (telomeric repeat amplification protocol assays) indicated that the complexes significantly inhibited telomerase activity with IC50 values as low as 700 nM; the complexes did not significantly inhibit polymerase activity.


Assuntos
Quadruplex G , Compostos Organometálicos/química , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química
8.
Sci Rep ; 14(1): 7472, 2024 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553547

RESUMO

Treacle ribosome biogenesis factor 1 (TCOF1) is responsible for about 80% of mandibular dysostosis (MD) cases. We have formerly identified a correlation between TCOF1 and CNBP (CCHC-type zinc finger nucleic acid binding protein) expression in human mesenchymal cells. Given the established role of CNBP in gene regulation during rostral development, we explored the potential for CNBP to modulate TCOF1 transcription. Computational analysis for CNBP binding sites (CNBP-BSs) in the TCOF1 promoter revealed several putative binding sites, two of which (Hs791 and Hs2160) overlap with putative G-quadruplex (G4) sequences (PQSs). We validated the folding of these PQSs measuring circular dichroism and fluorescence of appropriate synthetic oligonucleotides. In vitro studies confirmed binding of purified CNBP to the target PQSs (both folded as G4 and unfolded) with Kd values in the nM range. ChIP assays conducted in HeLa cells chromatin detected the CNBP binding to TCOF1 promoter. Transient transfections of HEK293 cells revealed that Hs2160 cloned upstream SV40 promoter increased transcription of downstream firefly luciferase reporter gene. We also detected a CNBP-BS and PQS (Dr2393) in the zebrafish TCOF1 orthologue promoter (nolc1). Disrupting this G4 in zebrafish embryos by microinjecting DNA antisense oligonucleotides complementary to Dr2393 reduced the transcription of nolc1 and recapitulated the craniofacial anomalies characteristic of Treacher Collins Syndrome. Both cnbp overexpression and Morpholino-mediated knockdown in zebrafish induced nolc1 transcription. These results suggest that CNBP modulates the transcriptional expression of TCOF1 through a mechanism involving G-quadruplex folding/unfolding, and that this regulation is active in vertebrates as distantly related as bony fish and humans. These findings may have implications for understanding and treating MD.


Assuntos
Quadruplex G , Disostose Mandibulofacial , Animais , Humanos , DNA/metabolismo , Células HEK293 , Células HeLa , Disostose Mandibulofacial/genética , Disostose Mandibulofacial/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
9.
Nucleic Acids Res ; 39(22): 9605-19, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21880593

RESUMO

In mammalian cells, the main pathway for DNA double-strand breaks (DSBs) repair is classical non-homologous end joining (C-NHEJ). An alternative or back-up NHEJ (B-NHEJ) pathway has emerged which operates preferentially under C-NHEJ defective conditions. Although B-NHEJ appears particularly relevant to genomic instability associated with cancer, its components and regulation are still largely unknown. To get insights into this pathway, we have knocked-down Ku, the main contributor to C-NHEJ. Thus, models of human cell lines have been engineered in which the expression of Ku70/80 heterodimer can be significantly lowered by the conditional induction of a shRNA against Ku70. On Ku reduction in cells, resulting NHEJ competent protein extracts showed a shift from C- to B-NHEJ that could be reversed by addition of purified Ku protein. Using a cellular fractionation protocol after treatment with a strong DSBs inducer followed by western blotting or immunostaining, we established that, among C-NHEJ factors, Ku is the main counteracting factor against mobilization of PARP1 and the MRN complex to damaged chromatin. In addition, Ku limits PAR synthesis and single-stranded DNA production in response to DSBs. These data support the involvement of PARP1 and the MRN proteins in the B-NHEJ route for the repair of DNA DSBs.


Assuntos
Antígenos Nucleares/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Antígenos Nucleares/genética , Fracionamento Celular , Linhagem Celular , Cromatina/química , Cromatina/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Técnicas de Silenciamento de Genes , Humanos , Autoantígeno Ku , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases
10.
EMBO J ; 27(10): 1513-24, 2008 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-18418389

RESUMO

Topoisomerase (Topo) IIIalpha associates with BLM helicase, which is proposed to be important in the alternative lengthening of telomeres (ALT) pathway that allows telomere recombination in the absence of telomerase. Here, we show that human Topo IIIalpha colocalizes with telomeric proteins at ALT-associated promyelocytic bodies from ALT cells. In these cells, Topo IIIalpha immunoprecipitated with telomere binding protein (TRF) 2 and BLM and was shown to be associated with telomeric DNA by chromatin immunoprecipitation, suggesting that these proteins form a complex at telomere sequences. Topo IIIalpha depletion by small interfering RNA reduced ALT cell survival, but did not affect telomerase-positive cell lines. Moreover, repression of Topo IIIalpha expression in ALT cells reduced the levels of TRF2 and BLM proteins, provoked a strong increase in the formation of anaphase bridges, induced the degradation of the G-overhang signal, and resulted in the appearance of DNA damage at telomeres. In contrast, telomere maintenance and TRF2 levels were unaffected in telomerase-positive cells. We conclude that Topo IIIalpha is an important telomere-associated factor, essential for telomere maintenance and chromosome stability in ALT cells, and speculate on its potential mechanistic function.


Assuntos
Instabilidade Cromossômica , DNA Topoisomerases Tipo I/metabolismo , Telômero/metabolismo , Telômero/ultraestrutura , Adenosina Trifosfatases/análise , Adenosina Trifosfatases/metabolismo , Anáfase , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Imunoprecipitação da Cromatina , Instabilidade Cromossômica/genética , DNA Helicases/análise , DNA Helicases/metabolismo , DNA Topoisomerases Tipo I/análise , DNA Topoisomerases Tipo I/genética , Humanos , Proteínas de Neoplasias/análise , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/análise , Proteínas Nucleares/metabolismo , Proteína da Leucemia Promielocítica , Subunidades Proteicas/análise , Subunidades Proteicas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , RecQ Helicases , Complexo Shelterina , Proteínas de Ligação a Telômeros/análise , Proteínas de Ligação a Telômeros/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/análise , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Fatores de Transcrição/análise , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/análise , Proteínas Supressoras de Tumor/metabolismo
11.
Nucleic Acids Res ; 38(20): 7187-98, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20571083

RESUMO

Telomeres protect chromosome ends from being recognized as double-stranded breaks. Telomeric function is ensured by the shelterin complex in which TRF2 protein is an essential player. The G-rich strand of telomere DNA can fold into G-quadruplex (G4) structure. Small molecules stabilizing G4 structures, named G4 ligands, have been shown to alter telomeric functions in human cells. In this study, we show that a guanine-rich RNA sequence located in the 5'-UTR region of the TRF2 mRNA (hereafter 91TRF2G) is capable of forming a stable quadruplex that causes a 2.8-fold decrease in the translation of a reporter gene in human cells, as compared to a mutant 5'-UTR unable to fold into G4. We also demonstrate that several highly selective G4 ligands, the pyridine dicarboxamide derivative 360A and bisquinolinium compounds Phen-DC(3) and Phen-DC(6), are able to bind the 91TRF2G:RNA sequence and to modulate TRF2 protein translation in vitro. Since the naturally occurring 5'-UTR TRF2:RNA G4 element was used here, which is conserved in several vertebrate orthologs, the present data substantiate a potential translational mechanism mediated by a G4 RNA motif for the downregulation of TRF2 expression.


Assuntos
Regiões 5' não Traduzidas , Quadruplex G , Biossíntese de Proteínas , Sequências Reguladoras de Ácido Ribonucleico , Proteína 2 de Ligação a Repetições Teloméricas/genética , Sequência de Bases , Linhagem Celular , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Humanos , Ligantes , Dados de Sequência Molecular , Estabilidade de RNA
12.
Elife ; 102021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34180392

RESUMO

G-quadruplexes (G4) are non-canonical DNA structures found in the genome of most species including human. Small molecules stabilizing these structures, called G4 ligands, have been identified and, for some of them, shown to induce cytotoxic DNA double-strand breaks. Through the use of an unbiased genetic approach, we identify here topoisomerase 2α (TOP2A) as a major effector of cytotoxicity induced by two clastogenic G4 ligands, pyridostatin and CX-5461, the latter molecule currently undergoing phase I/II clinical trials in oncology. We show that both TOP2 activity and transcription account for DNA break production following G4 ligand treatments. In contrast, clastogenic activity of these G4 ligands is countered by topoisomerase 1 (TOP1), which limits co-transcriptional G4 formation, and by factors promoting transcriptional elongation. Altogether our results support that clastogenic G4 ligands act as DNA structure-driven TOP2 poisons at transcribed regions bearing G4 structures.


Assuntos
Aminoquinolinas/farmacologia , Antineoplásicos/farmacologia , Benzotiazóis/farmacologia , DNA Topoisomerases Tipo II/metabolismo , Naftiridinas/farmacologia , Ácidos Picolínicos/farmacologia , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Linhagem Celular , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Ensaio de Unidades Formadoras de Colônias , Quebras de DNA de Cadeia Dupla , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , DNA Topoisomerases Tipo II/genética , Quadruplex G , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas de Ligação a Poli-ADP-Ribose/genética , Polimorfismo de Nucleotídeo Único , Interferência de RNA , RNA-Seq
13.
J Vet Med Sci ; 72(1): 85-7, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19915337

RESUMO

The Egyptian fruit-bat Rousettus aegyptiacus which had been raised at the private commercial aquarium in Seoul, Korea for indoor exhibition was found dead and submitted to College of Veterinary Medicine, Seoul National University for postmortem examination. A pure bacterium of Kluyvera ascorbata was isolated from the blood specimen. The isolation of K. ascorbata from fruit bat is very important, because it is the most infectious agent of the genus Kluyvera that cause serious diseases to animals and human. Fruit-bats which are distributed in pet shops through black-market in Korea although unproven become popular pet nowadays. This situation enhances chance of zoonosis. This paper describes the first isolation of K. ascorbata from the Egyptian fruit-bat.


Assuntos
Quirópteros/microbiologia , Infecções por Enterobacteriaceae/veterinária , Kluyvera/isolamento & purificação , Zoonoses , Animais , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/patologia , Sepse/microbiologia
14.
Cell Biol Int ; 33(1): 65-70, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18977451

RESUMO

One of the most important factors determining the success of the development of cloned embryos is the cell cycle stage of the donor cells. We investigated the effects of serum starvation, culturing to confluence and roscovitine treatment on the cell cycle synchronization of goldfish caudal fin-derived fibroblasts by flow cytometric analysis. The results show that culturing the cells to confluence (85.5%) and roscovitine treatment (82.71%) yield a significantly higher percentage of cells arrested in the G0/G1 (P<0.05) phase than serum starvation (62.85%). Different concentrations of roscovitine (5, 10, or 15 microM) induce cell cycle arrest at the G0/G1 phase.


Assuntos
Ciclo Celular , Fibroblastos/citologia , Análise de Variância , Animais , Técnicas de Cultura de Células , Divisão Celular/efeitos dos fármacos , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Fase G1 , Carpa Dourada , Purinas/metabolismo , Purinas/farmacologia , Fase de Repouso do Ciclo Celular , Roscovitina , Inanição
15.
Arch Virol ; 154(2): 343-6, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19130166

RESUMO

Diseased wild redspotted grouper Epinephelus akaara were collected from Seto Inland Sea, Ehime Prefecture, in August 2002. Fish showed erratic swimming behavior and inflation of the swim bladder. The fish brains were positive for nodavirus in both RT-PCR and nested PCR. The sequence of the nested PCR product (177 nt) was closely related to that of a known betanodavirus, redspotted grouper nervous necrosis virus. When juvenile sevenband grouper E. septemfasciatus were challenged intravitreously with virus, abnormal swimming behavior and high mortality were observed. This is the first report on viral nervous necrosis in a wild population of redspotted grouper with clinical signs.


Assuntos
Bass/virologia , Proteínas do Capsídeo/genética , Doenças dos Peixes/virologia , Nodaviridae/genética , Nodaviridae/patogenicidade , Infecções por Vírus de RNA/veterinária , Animais , Encéfalo/virologia , Proteínas do Capsídeo/classificação , Genes Virais , Japão , Nodaviridae/classificação , Nodaviridae/isolamento & purificação , Filogenia , Infecções por Vírus de RNA/virologia , Virulência/genética
16.
Dalton Trans ; 48(18): 6091-6099, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-30860519

RESUMO

Porphyrins represent a valuable class of ligands for G-quadruplex nucleic acids. Herein, we evaluate the binding of cationic porphyrins metallated with gold(iii) to G-quadruplex DNA and we compare it with other porphyrin derivatives. The G-quadruplex stabilization capacity and the selectivity of the various porphyrins were evaluated by biophysical and biochemical assays. The porphyrins were also tested as inhibitors of telomerase. It clearly appeared that the insertion of gold(iii) ion in the center of the porphyrin increases the binding affinity of the porphyrin for the G-quadruplex target. Together with modelling studies, it is possible to propose that the insertion of the square planar gold(iii) ion adds an extra positive charge on the complex and decreases the electron density in the porphyrin aromatic macrocycle, both properties being in favour of stronger electrostatic and π-staking interactions.

17.
J Vet Diagn Invest ; 20(1): 38-44, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18182506

RESUMO

Viral nervous necrosis (VNN) is a worldwide disease affecting several species of cultured marine fish. In Korea, VNN has been identified in several species of cultured marine fish. In this study, the authors present data of the amplified nested polymerase chain reaction product (420 bp) of 21 nodavirus strains from different species of apparently healthy wild marine fish on the southern coast of Korea. Phylogenetic analysis based on the partial nucleotide sequence (177 bases) of the RNA2 coat protein gene of 21 strains was highly homologous (93-100%) and closely related to that of the known betanodavirus, redspotted grouper nervous necrosis virus. These results indicate that betanodaviruses occur in large populations of wild marine fish in the southern part of the Korean peninsula, suggesting the importance of these subclinically infected fish as an inoculum source of betanodavirus that is horizontally transmitted to susceptible cultured fish species.


Assuntos
Doenças dos Peixes/virologia , Nodaviridae/isolamento & purificação , Infecções por Vírus de RNA/veterinária , Sequência de Aminoácidos , Animais , Aquicultura , Sequência de Bases , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Doenças dos Peixes/epidemiologia , Peixes , Coreia (Geográfico)/epidemiologia , Dados de Sequência Molecular , Nodaviridae/genética , Filogenia , Infecções por Vírus de RNA/epidemiologia , Infecções por Vírus de RNA/virologia , RNA Viral/química , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Alinhamento de Sequência
18.
Cancer Res ; 66(14): 6908-12, 2006 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16849533

RESUMO

Telomestatin is a potent G-quadruplex ligand that specifically interacts with the 3' telomeric overhang, leading to its degradation and that induces a delayed senescence and apoptosis of cancer cells. Protection of Telomere 1 (POT1) was recently identified as a specific single-stranded telomere-binding protein involved in telomere capping and T-loop maintenance. We showed here that a telomestatin treatment inhibits POT1 binding to the telomeric overhang in vitro. The treatment of human EcR293 cells by telomestatin induces a dramatic and rapid delocalization of POT1 from its normal telomere sites but does not affect the telomere localization of the double-stranded telomere-binding protein TRF2. Thus, we propose that G-quadruplex stabilization at telomeric G-overhang inactivates POT1 telomeric function, generating a telomere dysfunction in which chromosome ends are no longer properly protected.


Assuntos
DNA/metabolismo , Oxazóis/farmacologia , Proteínas de Ligação a Telômeros/antagonistas & inibidores , Telômero/metabolismo , Linhagem Celular , DNA/biossíntese , DNA/efeitos dos fármacos , DNA/genética , Quadruplex G , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Rim/citologia , Rim/efeitos dos fármacos , Rim/metabolismo , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Complexo Shelterina , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/metabolismo , Telômero/genética , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas , Transfecção
19.
Nucleic Acids Res ; 33(7): 2192-203, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15831792

RESUMO

The triazine derivative 12459 is a potent G-quadruplex interacting agent that inhibits telomerase activity. This agent induces time- and dose-dependent telomere shortening, senescence-like growth arrest and apoptosis in the human A549 tumour cell line. We show here that 12459 induces a delayed apoptosis that activates the mitochondrial pathway. A549 cell lines selected for resistance to 12459 and previously characterized for an altered hTERT expression also showed Bcl-2 overexpression. Transfection of Bcl-2 into A549 cells induced a resistance to the short-term apoptotic effect triggered by 12459, suggesting that Bcl-2 is an important determinant for the activity of 12459. In sharp contrast, the Bcl-2 overexpression was not sufficient to confer resistance to the senescence-like growth arrest induced by prolonged treatment with 12459. We also show that 12459 provokes a rapid degradation of the telomeric G-overhang in conditions that paralleled the apoptosis induction. In contrast, the G-overhang degradation was not observed when apoptosis was induced by camptothecin. Bcl-2 overexpression did not modify the G-overhang degradation, suggesting that this event is an early process uncoupled from the final apoptotic pathway.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Compostos de Quinolínio/farmacologia , Triazinas/farmacologia , Antineoplásicos/química , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Senescência Celular , Resistencia a Medicamentos Antineoplásicos , Guanina/química , Humanos , Mitocôndrias/metabolismo , Compostos de Quinolínio/química , Compostos de Quinolínio/toxicidade , Telômero/química , Telômero/efeitos dos fármacos , Triazinas/química , Triazinas/toxicidade
20.
Nucleic Acids Res ; 33(13): 4182-90, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16052031

RESUMO

The G-overhangs of telomeres are thought to adopt particular conformations, such as T-loops or G-quadruplexes. It has been suggested that G-quadruplex structures could be stabilized by specific ligands in a new approach to cancer treatment consisting in inhibition of telomerase, an enzyme involved in telomere maintenance and cell immortality. Although the formation of G-quadruplexes was demonstrated in vitro many years ago, it has not been definitively demonstrated in living human cells. We therefore investigated the chromosomal binding of a tritiated G-quadruplex ligand, 3H-360A (2,6-N,N'-methyl-quinolinio-3-yl)-pyridine dicarboxamide [methyl-3H]. We verified the in vitro selectivity of 3H-360A for G-quadruplex structures by equilibrium dialysis. We then showed by binding experiments with human genomic DNA that 3H-360A has a very potent selectivity toward G-quadruplex structures of the telomeric 3'-overhang. Finally, we performed autoradiography of metaphase spreads from cells cultured with 3H-360A. We found that 3H-360A was preferentially bound to chromosome terminal regions of both human normal (peripheral blood lymphocytes) and tumor cells (T98G and CEM1301). In conclusion, our results provide evidence that a specific G-quadruplex ligand interacts with the terminal ends of human chromosomes. They support the hypothesis that G-quadruplex ligands induce and/or stabilize G-quadruplex structures at telomeres of human cells.


Assuntos
Cromossomos Humanos/química , DNA/metabolismo , Piridinas/metabolismo , Quinolinas/metabolismo , Telômero/química , Sítios de Ligação , Linhagem Celular Tumoral , Células Cultivadas , Cromossomos Humanos/metabolismo , DNA/química , Quadruplex G , Guanina/química , Humanos , Ligantes , Linfócitos/ultraestrutura , Metáfase , Piridinas/química , Quinolinas/química , Telômero/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA