Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Nucleic Acids Res ; 52(10): 5732-5755, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597682

RESUMO

Expansion of a G4C2 repeat in the C9orf72 gene is associated with familial Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD). To investigate the underlying mechanisms of repeat instability, which occurs both somatically and intergenerationally, we created a novel mouse model of familial ALS/FTD that harbors 96 copies of G4C2 repeats at a humanized C9orf72 locus. In mouse embryonic stem cells, we observed two modes of repeat expansion. First, we noted minor increases in repeat length per expansion event, which was dependent on a mismatch repair pathway protein Msh2. Second, we found major increases in repeat length per event when a DNA double- or single-strand break (DSB/SSB) was artificially introduced proximal to the repeats, and which was dependent on the homology-directed repair (HDR) pathway. In mice, the first mode primarily drove somatic repeat expansion. Major changes in repeat length, including expansion, were observed when SSB was introduced in one-cell embryos, or intergenerationally without DSB/SSB introduction if G4C2 repeats exceeded 400 copies, although spontaneous HDR-mediated expansion has yet to be identified. These findings provide a novel strategy to model repeat expansion in a non-human genome and offer insights into the mechanism behind C9orf72 G4C2 repeat instability.


Assuntos
Proteína C9orf72 , Expansão das Repetições de DNA , Instabilidade Genômica , Animais , Humanos , Camundongos , Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Modelos Animais de Doenças , Quebras de DNA de Cadeia Dupla , Expansão das Repetições de DNA/genética , Demência Frontotemporal/genética , Técnicas de Introdução de Genes , Instabilidade Genômica/genética , Proteína 2 Homóloga a MutS/genética
2.
J Cell Physiol ; 216(3): 816-23, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18446816

RESUMO

Studies on myocardial function have shown that hsp70, stimulated by an increase in temperature, leads to improved survival following ischemia-reperfusion (I-R). Low frequency electromagnetic fields (EMFs) also induce the stress protein hsp70, but without elevating temperature. We have examined the hemodynamic changes in concert with EMF pre-conditioning and the induction of hsp70 to determine whether improved myocardial function occurs following I-R injury in Sprague-Dawley rats. Animals were exposed to EMF (60 Hz, 8 microT) for 30 min prior to I-R. Ischemia was then induced by ligation of left anterior descending coronary artery (LAD) for 30 min, followed by 30 min of reperfusion. Blood and heart tissue levels for hsp70 were determined by Western blot and RNA transcription by rtPCR. Significant upregulation of the HSP70 gene and increased hsp70 levels were measured in response to EMF pre-exposures. Invasive hemodynamics, as measured using a volume conductance catheter, demonstrated significant recovery of systolic contractile function after 30 min of reperfusion following EMF exposure. Additionally, isovolemic relaxation, a measure of ventricular diastolic function, was markedly improved in EMF-treated animals. In conclusion, non-invasive EMF induction of hsp70 preserved myocardial function and has the potential to improve tolerance to ischemic injury.


Assuntos
Campos Eletromagnéticos , Proteínas de Choque Térmico HSP70/metabolismo , Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Idoso , Animais , Feminino , Proteínas de Choque Térmico HSP70/genética , Hemodinâmica , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão
3.
Circulation ; 113(9): 1226-34, 2006 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-16505177

RESUMO

BACKGROUND: The beneficial effects of reperfusion therapies have been limited by the amount of ischemic damage that occurs before reperfusion. To enable development of interventions to reduce cell injury, our research has focused on understanding mechanisms involved in cardiac cell death after ischemia/reperfusion (I/R) injury. In this context, our laboratory has been investigating the role of the receptor for advanced-glycation end products (RAGE) in myocardial I/R injury. METHODS AND RESULTS: In this study we tested the hypothesis that RAGE is a key modulator of I/R injury in the myocardium. In ischemic rat hearts, expression of RAGE and its ligands was significantly enhanced. Pretreatment of rats with sRAGE, a decoy soluble part of RAGE receptor, reduced ischemic injury and improved functional recovery of myocardium. To specifically dissect the impact of RAGE, hearts from homozygous RAGE-null mice were isolated, perfused, and subjected to I/R. RAGE-null mice were strikingly protected from the adverse impact of I/R injury in the heart, as indicated by decreased release of LDH, improved functional recovery, and increased adenosine triphosphate (ATP). In rats and mice, activation of the RAGE axis was associated with increases in inducible nitric oxide synthase expression and levels of nitric oxide, cyclic guanosine monophosphate (cGMP), and nitrotyrosine. CONCLUSIONS: These findings demonstrate novel and key roles for RAGE in I/R injury in the heart. The findings also demonstrate that the interaction of RAGE with advanced-glycation end products affects myocardial energy metabolism and function during I/R.


Assuntos
Isquemia Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/patologia , Receptores Imunológicos/fisiologia , Animais , GMP Cíclico/análise , Metabolismo Energético , Masculino , Camundongos , Camundongos Knockout , Isquemia Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Óxido Nítrico/análise , Óxido Nítrico Sintase Tipo II/análise , Ratos , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/deficiência , Tirosina/análogos & derivados , Tirosina/análise , Regulação para Cima
4.
Am J Physiol Heart Circ Physiol ; 296(2): H333-41, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19060123

RESUMO

Aldose reductase (AR), a member of the aldo-keto reductase family, has been demonstrated to play a central role in mediating myocardial ischemia-reperfusion (I/R) injury. Recently, using transgenic mice broadly overexpressing human AR (ARTg), we demonstrated that AR is an important component of myocardial I/R injury and that inhibition of this enzyme protects heart from I/R injury (20-22, 48, 49, 56). To rigorously delineate mechanisms by which AR pathway influences myocardial ischemic injury, we investigated the role played by reactive oxygen species (ROS), antioxidant enzymes, and mitochondrial permeability transition (MPT) pore opening in hearts from ARTg or littermates [wild type (WT)] subjected to I/R. MPT pore opening after I/R was determined using mitochondrial uptake of 2-deoxyglucose ratio, while H2O2 was measured as a key indicator of ROS. Myocardial 2-deoxyglucose uptake ratio and calcium-induced swelling were significantly greater in mitochondria from ARTg mice than in WT mice. Blockade of MPT pore with cyclosphorin A during I/R reduced ischemic injury significantly in ARTg mice hearts. H2O2 measurements indicated mitochondrial ROS generation after I/R was significantly greater in ARTg mitochondria than in WT mice hearts. Furthermore, the levels of antioxidant GSH were significantly reduced in ARTg mitochondria than in WT. Resveratrol treatment or pharmacological blockade of AR significantly reduced ROS generation and MPT pore opening in mitochondria of ARTg mice hearts exposed to I/R stress. This study demonstrates that MPT pore opening is a key event by which AR pathway mediates myocardial I/R injury, and that the MPT pore opening after I/R is triggered, in part, by increases in ROS generation in ARTg mice hearts. Therefore, inhibition of AR pathway protects mitochondria and hence may be a useful adjunct for salvaging ischemic myocardium.


Assuntos
Aldeído Redutase/metabolismo , Mitocôndrias Cardíacas/enzimologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Traumatismo por Reperfusão Miocárdica/enzimologia , Miocárdio/enzimologia , Aldeído Redutase/genética , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Cálcio/metabolismo , Ciclosporina/farmacologia , Desoxiglucose/metabolismo , Modelos Animais de Doenças , Glutationa/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/patologia , Proteínas de Transporte da Membrana Mitocondrial/antagonistas & inibidores , Poro de Transição de Permeabilidade Mitocondrial , Dilatação Mitocondrial , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Espécies Reativas de Oxigênio/metabolismo , Resveratrol , Estilbenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA