Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Semin Cell Dev Biol ; 118: 163-171, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34053865

RESUMO

Human pluripotent stem cell derived cardiomyocytes (hPSC-CMs) represent an inexhaustible cell source for in vitro disease modeling, drug discovery and toxicity screening, and potential therapeutic applications. However, currently available differentiation protocols yield populations of hPSC-CMs with an immature phenotype similar to cardiomyocytes in the early fetal heart. In this review, we consider the developmental processes and signaling cues involved in normal human cardiac maturation, as well as how these insights might be applied to the specific maturation of hPSC-CMs. We summarize the state-of-the-art and relative merits of reported hPSC-CM maturation strategies including prolonged duration in culture, metabolic manipulation, treatment with soluble or substrate-based cues, and tissue engineering approaches. Finally, we review the evidence that hPSC-CMs mature after implantation in injured hearts as such in vivo remodeling will likely affect the safety and efficacy of a potential hPSC-based cardiac therapy.


Assuntos
Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes/metabolismo , Diferenciação Celular , Humanos
2.
Circulation ; 145(18): 1412-1426, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35089805

RESUMO

BACKGROUND: Human pluripotent stem cell (hPSC)-derived cardiomyocytes (hPSC-CMs) have tremendous promise for application in cardiac regeneration, but their translational potential is limited by an immature phenotype. We hypothesized that large-scale manufacturing of mature hPSC-CMs could be achieved through culture on polydimethylsiloxane (PDMS)-lined roller bottles and that the transplantation of these cells would mediate better structural and functional outcomes than with conventional immature hPSC-CM populations. METHODS: We comprehensively phenotyped hPSC-CMs after in vitro maturation for 20 and 40 days on either PDMS or standard tissue culture plastic substrates. All hPSC-CMs were generated from a transgenic hPSC line that stably expressed a voltage-sensitive fluorescent reporter to facilitate in vitro and in vivo electrophysiological studies, and cardiomyocyte populations were also analyzed in vitro by immunocytochemistry, ultrastructure and fluorescent calcium imaging, and bulk and single-cell transcriptomics. We next compared outcomes after the transplantation of these populations into a guinea pig model of myocardial infarction using end points including histology, optical mapping of graft- and host-derived action potentials, echocardiography, and telemetric electrocardiographic monitoring. RESULTS: We demonstrated the economic generation of >1×108 mature hPSC-CMs per PDMS-lined roller bottle. Compared with their counterparts generated on tissue culture plastic substrates, PDMS-matured hPSC-CMs exhibited increased cardiac gene expression and more mature structural and functional properties in vitro. More important, intracardiac grafts formed with PDMS-matured myocytes showed greatly enhanced structure and alignment, better host-graft electromechanical integration, less proarrhythmic behavior, and greater beneficial effects on contractile function. CONCLUSIONS: We describe practical methods for the scaled generation of mature hPSC-CMs and provide the first evidence that the transplantation of more mature cardiomyocytes yields better outcomes in vivo.


Assuntos
Miócitos Cardíacos , Células-Tronco Pluripotentes , Animais , Diferenciação Celular , Linhagem Celular , Cobaias , Humanos , Miócitos Cardíacos/metabolismo , Plásticos/metabolismo , Células-Tronco Pluripotentes/metabolismo
3.
Nanomedicine ; 13(3): 999-1010, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27993727

RESUMO

Nanoparticle (NP) interactions with biological tissues are affected by the size, shape and surface chemistry of the NPs. Here we use in vivo (zebrafish) and in vitro (HUVEC) models to investigate association of quantum dots (QDs) with endothelial cells and the effect of fluid flow. After injection into the developing zebrafish, circulating QDs associate with endothelium and penetrate surrounding tissue parenchyma over time. Amino-functionalized QDs cluster, interact with cells, and clear more rapidly than carboxy-functionalized QDs in vivo, highlighting charge influences. QDs show stronger accumulation in slow-flowing, small caliber venous vessels than in fast-flowing high caliber arterial vessels. Parallel-plate flow experiments with HUVEC support these findings, showing reduced QD-EC association with increasing flow. In vivo, flow arrest after nanoparticle injection still results in venous accumulation at 18 h. Overall our results suggest that both QD charge and blood flow modulate particle-endothelial cell interactions.


Assuntos
Vasos Sanguíneos/fisiologia , Células Endoteliais/metabolismo , Pontos Quânticos/metabolismo , Resinas Acrílicas/administração & dosagem , Resinas Acrílicas/metabolismo , Resinas Acrílicas/toxicidade , Aminação , Animais , Velocidade do Fluxo Sanguíneo , Vasos Sanguíneos/efeitos dos fármacos , Ácidos Carboxílicos/administração & dosagem , Ácidos Carboxílicos/metabolismo , Ácidos Carboxílicos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/metabolismo , Polietilenoglicóis/toxicidade , Pontos Quânticos/administração & dosagem , Pontos Quânticos/toxicidade , Peixe-Zebra
4.
RSC Adv ; 8(14): 7697-7708, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35539117

RESUMO

The effect of surface PEGylation on nanoparticle transport through an extracellular matrix (ECM) is an important determinant for tumor targeting success. Fluorescent stealth liposomes (base lipid DOPC) were prepared incorporating different proportions of PEG-grafted lipids (2.5, 5 and 10% of the total lipid content) for a series of PEG molecular weights (1000, 2000 and 5000 Da). The ECM was modelled using a collagen matrix. The kinetics of PEGylated liposome adhesion to and transport in collagen matrices were tracked using fluorescence correlation spectroscopy (FCS) and confocal microscopy, respectively. Generalized least square regressions were used to determine the temporal correlations between PEG molecular weight, surface density and conformation, and the liposome transport in a collagen hydrogel over 15 hours. PEG conformation determined the interaction of liposomes with the collagen hydrogel and their transport behaviour. Interestingly, liposomes with mushroom PEG conformation accumulated on the interface of the collagen hydrogel, creating a dense liposomal front with short diffusion distances into the hydrogels. On the other hand, liposomes with dense brush PEG conformation interacted to a lesser extent with the collagen hydrogel and diffused to longer distances. In conclusion, a better understanding of PEG surface coating as a modifier of transport in a model ECM matrix has resulted. This knowledge will improve design of future liposomal drug carrier systems.

5.
RSC Adv ; 8(41): 23027-23039, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35540163

RESUMO

Despite years of excellent individual studies, the impact of nanoparticle (NP) cytotoxicity studies remains limited by inconsistent data collection and analysis. It is often unclear how exposure conditions can be used to determine cytotoxicity quantitatively. Discrepancies due to using different measurement conditions, readouts and controls to characterize NP interactions with cells lead to further challenges. To examine which parameters are critical in NP cytotoxicity studies, we have chosen to examine two NP types (liposomes and quantum dots) at different concentrations incubated with two primary vascular endothelial cells, HUVEC and HMVEC-C for a standard time of 24 h. We paid close attention to the effects of positive controls and cell association on interpretation of cytotoxicity data. Various cellular responses (ATP content, oxidative stress, mitochondrial toxicity, and phospholipidosis) were measured in parallel. Interestingly, cell association data varied significantly with the different image analyses. However, cytotoxicity responses could all be correlated with exposure concentration. Cell type did have an effect on cytotoxicity reports. Most significantly, NP cytotoxicity results varied with the inclusion or exclusion of positive controls. In the absence of positive controls, one tends to emphasize small changes in cell responses to NPs.

6.
Nanoscale ; 10(32): 15249-15261, 2018 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-30066709

RESUMO

Nanoparticles in the bloodstream are subjected to complex fluid forces as they move through the curves and branches of healthy or tumor vasculature. While nanoparticles are known to preferentially accumulate in angiogenic vessels, little is known about the flow conditions in these vessels and how these conditions may influence localization. Here, we report a methodology which combines confocal imaging of nanoparticle-injected transgenic zebrafish embryos, 3D modeling of the vasculature, particle mapping, and computational fluid dynamics, to quantitatively assess the effects of fluid forces on nanoparticle distribution in vivo. Six-fold lower accumulation was found in zebrafish arteries compared to the lower velocity veins. Nanoparticle localization varied inversely with shear stress. Highest accumulation was present in regions of disturbed flow found at branch points and curvatures in the vasculature. To further investigate cell-particle association under flow, human endothelial cells were exposed to nanoparticles under hemodynamic conditions typically found in human vessels. Physiological adaptations of endothelial cells to 20 hours of flow enhanced nanoparticle accumulation in regions of disturbed flow. Overall our results suggest that fluid shear stress magnitude, flow disturbances, and flow-induced changes in endothelial physiology modulate nanoparticle localization in angiogenic vessels.


Assuntos
Endotélio Vascular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Nanopartículas , Estresse Mecânico , Animais , Animais Geneticamente Modificados , Vasos Sanguíneos , Embrião não Mamífero , Hemodinâmica , Humanos , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA