Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 16(4): 2198-204, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26990380

RESUMO

We herein demonstrate the first 96-well plate platform to screen effects of micro- and nanotopographies on cell growth and proliferation. Existing high-throughput platforms test a limited number of factors and are not fully compatible with multiple types of testing and assays. This platform is compatible with high-throughput liquid handling, high-resolution imaging, and all multiwell plate-based instrumentation. We use the platform to screen for topographies and drug-topography combinations that have short- and long-term effects on T cell activation and proliferation. We coated nanofabricated "trench-grid" surfaces with anti-CD3 and anti-CD28 antibodies to activate T cells and assayed for interleukin 2 (IL-2) cytokine production. IL-2 secretion was enhanced at 200 nm trench width and >2.3 µm grating pitch; however, the secretion was suppressed at 100 nm width and <0.5 µm pitch. The enhancement on 200 nm grid trench was further amplified with the addition of blebbistatin to reduce contractility. The 200 nm grid pattern was found to triple the number of T cells in long-term expansion, a result with direct clinical applicability in adoptive immunotherapy.


Assuntos
Técnicas de Cultura de Células , Ativação Linfocitária , Nanotecnologia , Linfócitos T , Animais , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Humanos , Interleucina-2/metabolismo , Nanotecnologia/instrumentação , Nanotecnologia/métodos , Linfócitos T/citologia , Linfócitos T/metabolismo
2.
Proc Natl Acad Sci U S A ; 109(14): 5328-33, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22431603

RESUMO

Cell growth and differentiation are critically dependent upon matrix rigidity, yet many aspects of the cellular rigidity-sensing mechanism are not understood. Here, we analyze matrix forces after initial cell-matrix contact, when early rigidity-sensing events occur, using a series of elastomeric pillar arrays with dimensions extending to the submicron scale (2, 1, and 0.5 µm in diameter covering a range of stiffnesses). We observe that the cellular response is fundamentally different on micron-scale and submicron pillars. On 2-µm diameter pillars, adhesions form at the pillar periphery, forces are directed toward the center of the cell, and a constant maximum force is applied independent of stiffness. On 0.5-µm diameter pillars, adhesions form on the pillar tops, and local contractions between neighboring pillars are observed with a maximum displacement of ∼60 nm, independent of stiffness. Because mutants in rigidity sensing show no detectable displacement on 0.5-µm diameter pillars, there is a correlation between local contractions to 60 nm and rigidity sensing. Localization of myosin between submicron pillars demonstrates that submicron scale myosin filaments can cause these local contractions. Finally, submicron pillars can capture many details of cellular force generation that are missed on larger pillars and more closely mimic continuous surfaces.


Assuntos
Diferenciação Celular , Divisão Celular , Animais , Células Cultivadas , Imunofluorescência , Camundongos , Microscopia Eletrônica de Varredura , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA