Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 32(47)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34359054

RESUMO

In order to solve the 'ultraviolet (UV) filtering problem' caused by traditional sandwich-type structure in photoelectrochemical (PEC) UV detector, we design a special electrode based on stainless steel mesh, which integrates the light absorption layer and the electron collection electrode in a simple way. In combination with an UV-transparent quartz substrate, UV light can directly reach the active material. The improved detector shows good visible-blind, self-powered, and linear response characteristics. The serious recombination caused by metal electrode is suppressed by depositing a barrier layer. The optimized device exhibits a high photoresponse of 0.103 A W-1at 296 nm, a short recovery time of 250 ms, and very sensitive switching ability. Furthermore, the response range of the detector is expanded from 300 to 400 nm to the full near-UV region. Our work provides an efficient strategy to solve the key problem of the PEC UV detector.

2.
Small Methods ; 6(7): e2200295, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35676228

RESUMO

Single-atom catalysts (SACs) with a maximum atom utilization efficiency have received growing attention in heterogeneous catalysis. The supporting substrate that provides atomic-dispersed anchoring sites and the local electronic environment in these catalysts is crucial to their activity and stability. Here, inspired by N-doped graphene substrate, the role of N is explored in transition metal nitrides for anchoring single metal atoms toward single-atom catalysis. A pore-rich metallic vanadium nitride (VN) nanosheet is fabricated as one supporting-substrate example, whose surface features abundant unsaturated N sites with lower binding energy than that of widely used N-doped graphene. Impressively, it is found that this support can anchor nearly all platinum-group single atoms (e.g., platinum, palladium, iridium, and ruthenium), and even be extendable to multiple SACs, i.e., binary (Pt/Pd) and ternary (Pt/Pd/Ir). As a proof-of-concept application for hydrogen production, Pt-based SAC (Pt1 -VN) performs excellently, exhibiting a mass activity up to 22.55 A mg-1 Pt at 0.05 V and a high turnover frequency value close to 0.350 H2 s-1 , superior to commercial platinum/carbon catalyst. The catalyst's durability can be further improved by using binary (Pt1 Pd1 -VN) SAC. This work provides inexpensive and durable nitride-based support, giving a possible pathway for universally constructing platinum-group SACs.

3.
ACS Appl Mater Interfaces ; 6(17): 14844-50, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25105218

RESUMO

Assembly techniques of graphene have attracted intense attention since their performance strongly depends on the manners in which graphene nanosheets are arranged. In this work, we demonstrate a viable process to synthesize winged graphene nanofibers (G-NFs) which could generate optimized pore size distribution by the fiber-like feature of graphene. The G-NF frameworks were achieved by processing the precursor graphene oxide nanosheets with the following procedures: microwave (MW) irradiation, salt addition, freeze-drying, and chemical reduction. The resultant framework composed of winged G-NFs with a diameter of 200-500 nm and a length of 5-20 µm. Moreover, the crimp degree of G-NFs can be rationally controlled by MW irradiation time. A formation mechanism of such winged G-NFs based on the synergistic effects from MW irradiation and solution ionic strength change has been proposed. With a practice in flexible electrode, after decorated with amorphous MnO2, the G-NF frameworks shows an enhanced specific capacitance compared to graphene nanosheets (G-NSs). This research has developed a controllable method to synthesis G-NFs, which can offer hierarchical pore structures, this kind of graphene nanostructure might enhance their performance in supercapacitor and related fields.

4.
Nanoscale ; 5(23): 11733-41, 2013 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-24114203

RESUMO

Flexible and high performance supercapacitors are very critical in modern society. In order to develop the flexible supercapacitors with high power density, free-standing and flexible three-dimensional graphene/carbon nanotubes/MnO2 (3DG/CNTs/MnO2) composite electrodes with interconnected ternary 3D structures were fabricated, and the fast electron and ion transport channels were effectively constructed in the rationally designed electrodes. Consequently, the obtained 3DG/CNTs/MnO2 composite electrodes exhibit superior specific capacitance and rate capability compared to 3DG/MnO2 electrodes. Furthermore, the 3DG/CNTs/MnO2 based asymmetric supercapacitor demonstrates the maximum energy and power densities of 33.71 W h kg(-1) and up to 22,727.3 W kg(-1), respectively. Moreover, the asymmetric supercapacitor exhibits excellent cycling stability with 95.3% of the specific capacitance maintained after 1000 cycle tests. Our proposed synthesis strategy to construct the novel ternary 3D structured electrodes can be efficiently applied to other high performance energy storage/conversion systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA